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Abstract  

Atherosclerotic cardiovascular disease (ASCVD) has emerged as the major cause of global mortality and morbidity. Risk 

of ASCVD can be assessed by using various conventional risk assessment tools like SCORE2, and Pooled Cohort Equations 

(PCE) which are associated with various drawbacks. This article demonstrates the conventional models limitations and 

explores a precision-based and multidimensional approach for prediction of risk. We review the integration of coronary 

artery calcium (CAC) scoring, novel biomarkers (e.g., hsCRP, Lp(a), ApoB) and polygenic risk scores (PRS) alongside the 

emerging role played by environmental exposures and social determinants of health (SDOH). Recent advancements in 

artificial intelligence (AI)-including federated learning, deep learning and natural language processing- are providing real-

time and dynamic estimation of risk by assessing multi-model data from omics, imaging and electronic health records 

platform. Ethical consideration and implementation challenges linked with application of these integrative model in clinical 

practice are also discussed in this. ASCVD prevention future lies in adopting adaptive and personalized options guided by 

AI enabled stratification of risk, with great focus on clinical utility, interpretability and equity. This evolving paradigm 

hold huge clinical advantage for more accurate assessment, earlier therapeutic intervention and improved clinical outcomes 

in patients across diverse populations. 
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Introduction 

Atherosclerotic cardiovascular disease (ASCVD) remains the leading 

cause of morbidity and mortality worldwide, accounting for nearly one-

third of all global deaths [1]. Accurate risk assessment is the cornerstone 

of preventive cardiology, guiding the allocation of pharmacologic and 

lifestyle interventions to those most likely to benefit. Over the past two 

decades, risk prediction models such as the Pooled Cohort Equations 

(PCE) and SCORE2 have become integral to clinical guidelines, enabling 

clinicians to estimate 10-year and lifetime ASCVD risk based on 

traditional risk factors including age, sex, blood pressure, cholesterol 

levels, smoking status, and diabetes [2,3]. 

Instead of widespread clinical utilizations, these models are associated 

with various drawbacks. Under-performance of these model has been 

noticed in certain ethnic groups, specifically in patients preset with severe 

inflammatory conditions and those present with atypical risk profiles [4]. 

Furthermore, emerging risk enhancers like high sensitivity C-reactive 

protein, lipoprotein(a) and apolipoprotein B or the severity and duration 

of diabetes are considered in conventional scoring methods. [5]. Sex-

specific factors (e.g., premature menopause, preeclampsia) and family 

history are also insufficiently integrated, leading to risk misclassification, 

particularly in women and younger adults [6]. 

Recent advances in biomarker research and genomics have catalyzed the 

development of next-generation risk stratification tools. Coronary artery 

calcium (CAC) scoring, for example, provides direct quantification of 

subclinical atherosclerosis and significantly refines risk estimates in 

intermediate-risk individuals [7]. Inflammatory biomarkers, particularly 

hsCRP, have demonstrated independent predictive value and therapeutic 

relevance, as evidenced by trials targeting inflammation to reduce 

ASCVD events [8]. 

Moreover, polygenic risk scores (PRS) aggregate the effects of numerous 

genetic variants, identifying individuals at high lifetime risk even in the 
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absence of traditional risk factors [9]. However, the clinical utility of PRS 

is currently limited by a lack of validation in non-European populations 

and challenges in integrating genetic data into routine care [10]. 

Distribution spectrum of polygenic risk scores (PRS) in individuals with 

different risk scores is demonstrated in figure 1. 

 

Table 1: Incremental Value of Biomarkers and Imaging in ASCVD Risk Prediction [18]. 

Emerging strategies utilizes machine learning and artificial intelligence 

(AI) to produce multidimensional data from imaging, biomarkers, 

genomics and electronic health records, offering the huge promise of 

more individualized and accurate risk assessment [11]. Furthermore, 

incorporating social determinants of health (SDOH)-like education, 

neighbourhood environment and socioeconomic status has been 

demonstrated to address health disparities and model performance [12]. 

As the field shifts towards prevention in a precise manner, the integration 

of social, biological, clinical and genetic data is poised to transform 

assessment of risk of ASCVD. This evolving paradigm major objective is 

to deliver more effective, personalized, equitable therapeutic options for 

prevention of cardiovascular disease, ultimately reduced the ASCVD 

global burden.  

2.Contemporary Challenges in ASCVD Risk 

Estimation 

2.1. Calibration and Discrimination in Diverse Populations 

A quite significant role is played by conventional ASCVD risk scores, 

such as SCORE2 and PCE in guiding preventive strategies. However, 

significant variations have been observed in their discrimination and 

calibration across various socioeconomic, geographic and ethnic groups. 

For instance, studies reveal that the PCE tends to overestimate risk in 

contemporary U.S. cohorts, particularly among White populations, while 

underestimating risk in South Asian, Indigenous, and certain Black 

populations [13]. SCORE2, although recalibrated for European 

subpopulations, still demonstrates limited accuracy in Central and Eastern 

European countries, where ASCVD incidence remains high [3]. 

These discrepancies majorly originate from the original deviation cohorts, 

which often associated with lack of representation from minority or high-

risk groups, and from secular changes in epidemiology of ASCVD due to 

improved management of risk factor and therapeutic strategies. In 

addition to this, 0.65 and 0.75 discrimination ability of these models has 

been measured by C-statistic, indicating only moderate assessment 

power.  In individuals present with atypical risk profiles, such as those 

with HIV or premature menopause or chronic inflammatory diseases, this 

moderate performance is quite problematic whose risk assessment is 

systematically underestimated by traditional models.  

2.2. Omission of Non-Traditional and Emerging Risk Factors 

Current risk calculators majorly focus on blood pressure, smoking status, 

diabetes, sex and age, omitting non-traditional risk factors that have been 

robustly associated to ASCVD. Notably, the duration and control of 

diabetes, chronic kidney disease, autoimmune conditions, and markers of 

chronic inflammation are not routinely incorporated. This omission is 

consequential, as individuals with chronic inflammatory diseases (e.g., 
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rheumatoid arthritis, systemic lupus erythematosus) have a 1.5- to 2-fold 

increased risk of ASCVD, independent of traditional risk factors [14]. 

Individuals with inherited risk, such as those present with familial 

hypercholesterolemia, can’t be identified by using standard calculators 

due to absence of genetic predisposition and family history, who may 

present with normal profile of lipid but with significant lifetime risk. [15]. 

Clinical utility of these models in real-world, heterogeneous populations 

is further limited due to lack of integration of SDOH-including access to 

health care facilities, education, income and neighbourhood deprivation.  

2.3. Temporal and Dynamic Risk Assessment Deficiencies 

A critical limitation of current ASCVD risk scores is their static nature. 

Most models provide a one-time risk estimate, typically over a 10-year 

horizon, without accounting for changes in risk factor control, medication 

adherence, or the emergence of new risk modifiers over time. This 

approach fails to capture the dynamic trajectory of risk, particularly in 

younger individuals or those with evolving comorbidities. Emerging 

evidence supports the use of repeated risk assessment and incorporation 

of time-updated variables to better reflect the true risk continuum [16]. 

10-years prediction risk of ASCVD in patients by pooled cohort equations 

is demonstrated in figure 2A. Predicted risk of ASCVD risk over 10 years 

is demonstrated in figure 2B. 

 
Figure 2A: 10-years prediction risk of ASCVD in patients by pooled cohort equations. 

 

Figure 2B: Predicted risk of ASCVD risk over 10 years. 
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Figure 2C: Comparison of ACC/AHA predicted risk and observed rates over 10 years. 

Moreover, traditional calculators do not account for the cumulative 

burden of risk factors, such as the duration of hypertension or 

hyperlipidemia, which has been shown to confer higher risk than point-

in-time measurements. This limitation is specifically relevant in younger 

adults, where instead of low short-term risk estimates lifetime risk may 

be huge. Figure 2C demonstrate comparison of ACC/AHA predicted risk 

and observed rates over 10 years. 

3.Integration of Advanced Biomarkers and Imaging 

3.1. Role of Novel Biomarkers in Risk Refinement 

The circulating biomarkers addition has been suggested to potentiate risk 

of ASCVD prediction, specifically in individuals at intermediate risk. 

hsCRP is the most extensively validated inflammatory marker, with 

elevated levels independently predicting ASCVD events even in the 

setting of low high-sensitivity C-reactive protein [17]. Other emerging 

biomarkers include lipoprotein(a) [Lp(a)], apolipoprotein B (ApoB), and 

high-sensitivity troponin, each associated with residual risk not captured 

by traditional metrics.   

Despite their promise, the incremental value of these biomarkers in risk 

reclassification remains modest. For example, the addition of hsCRP to  

the PCE improves the C-statistic by only 0.01–0.03. The clinical utility of 

routine biomarker measurement is therefore debated, with guidelines 

recommending their use primarily in cases of clinical uncertainty or 

intermediate risk. 

3.2. CAC Scoring as a Risk Modifier 

Non-invasive imaging, particularly CAC scoring, has emerged as a 

powerful tool for individualized risk assessment. CAC quantifies 

subclinical atherosclerosis and provides incremental prognostic 

information beyond traditional risk factors. In the Multi-Ethnic Study of 

Atherosclerosis, individuals with a CAC score of zero had a 10-year 

ASCVD event rate of <2%, regardless of risk factor burden, while those 

with CAC >100 had substantially higher event rates [18]. 

CAC scoring is specifically useful in reclassifying individuals present 

with intermediate or borderline risk, guiding the intensification or 

initiation of statin therapy. However, its clinical utility is limited by cost, 

access and concerns regarding exposure to radiation and it remain 

underestimated in younger adults and women, where non-calcified 

plaques may be preferred.  Incremental value of biomarkers and imaging 

in ASCVD risk prediction are shown in table 1 [18]. 

Tool/Marker Incremental C-static Clinical Utility Limitations 

hsCRP +0.01-0.03 Intermediate risk reclassification Modest improvement, cost 

Lp(a) +0.01 Identifies genetically mediated risk Limited assay standardization 

ApoB +0.01 Residual risk in statin-treated Not universally available 

CAC Score +0.05-0.10 Strongest for risk reclassification Access, radiation, cost 

Table 1: Incremental Value of Biomarkers and Imaging in ASCVD Risk Prediction 

†hsCRP: high-density C-Reactive Protein; Lp(a): Lipoprotein(a); ApoB: Apolipoprotein B; CAC: Coronary Artery Calcium 

4.Social and Environmental Determinants in Risk 
Prediction 

4.1. Socioeconomic and Psychosocial Factors 

A growing body of evidence underscores the impact of SDOH on ASCVD 

risk. Factors such as income, education, neighborhood deprivation, food 

insecurity, and access to healthcare significantly influence both the 

incidence and outcomes of cardiovascular disease [19]. Psychosocial 

stressors, including depression and social isolation, have also been linked 

to increased ASCVD events, independent of traditional risk factors.  

Instead of their significance, SDOH are rarely utilized in risk prediction 

models. Latest advancements, such as the progression of the 

neighborhood-level and Social Deprivation Index, have suggested 

discrimination and improved calibration when integrated with clinical 

models. SDOH incorporation into risk assessment of ASCVD is quite 
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important for advancing health equity and targeted therapeutic 

interventions to undeserved and high-risk populations. 

4.2. Environmental Exposures 

Environmental exposures, including climate-related factors, noise and air 

pollution, are characterized as major contributors to risk of ASCVD. 

Huge exposure to fine particulate matter (PM2.5) is linked with 10-20% 

rise in risk of cardiovascular events per 10 µg/m³ increment [20]. 

However, in standard risk calculators, these exposures are not captured 

currently, representing a missed chance for risk stratification in a 

comprehensive manner. 

5.AI and Machine Learning in ASCVD Risk 
Stratification 

5.1. Electronic health record (EHR)-Driven and Multi-Modal Risk 

Prediction 

Recent advancements in machine learning (ML) and AI potentiate the risk 

prediction models development that leverage multi-omic biomarkers, 

imaging data and large-scale EHRs. In comparison to conventional risk 

scoring methods in early-phase studies, these models have suggested 

superior discrimination and calibration. For example, incorporation of 

400 variables in ML-based models has achieved a C-statistic of 0.80–0.85 

for prediction of ASCVD, outperforming the SCORE2 and PCE. 

Risk estimates can be dynamically update by AI-driven strategies due to 

availability of new data, facilitating time-updated, and personalized risk 

trajectories. Furthermore, AI techniques are being established to 

potentiate patient and clinician understanding of risk drivers and 

promoting shared decision-making [21]. 

5.2. Future Directions: Integrative and Equitable Risk Assessment 

The future of prediction of ASCVD risk exist in the integration of social, 

genetic, biomarker and clinical data within AI-enabled platforms. Such 

multidimensional models have the capacity to deliver highly preventive, 

predictive and personalized care, while addressing disparities in 

assessment of risk. Ongoing risk includes ensuring equitable model 

performance, algorithm transparency and data privacy across wide 

populations [22]. 

6.Integration of Inflammation, Genetics, And Social 
Determinants In Risk Prediction 

6.1. Interplay of Inflammatory Pathways and Genomic Risk in 

ASCVD 

The convergence of genetic susceptibility and severe inflammation is 

highly characterized as a central driver of risk of ASCVD risk, beyond 

what is identified by conventional risk factors.  While prior content has 

addressed the omission of non-traditional risk factors and the role of PRS, 

this section uniquely focuses on the biological and mechanistic interplay 

between inflammatory pathways and genomic risk, and their implications 

for risk prediction. 

Chronic low-grade inflammation, as evidenced by elevated biomarkers 

such as hsCRP, interleukin-6 (IL-6), and tumor necrosis factor-alpha 

(TNF-α), is both a cause and consequence of atherogenesis [23]. Genome-

wide association studies have identified variants in loci related to 

inflammatory signaling (e.g., IL6R, CRP, NLRP3) that modulate both 

systemic inflammation and ASCVD risk [24]. Notably, individuals with 

high polygenic risk for coronary artery disease (CAD) and concomitant 

elevated hsCRP exhibit a synergistically increased risk of major adverse 

cardiovascular events, suggesting that the co-occurrence of pro-

inflammatory genotypes and phenotypes amplifies atherothrombotic risk 

[25]. 

Furthermore, findings of Mendelian randomization studies have 

suggested that genetically assessed rise in CRP and Il-6 causally rise in 

risk of ASCVD, suggesting a direct mechanistic association. This insight 

has increased the dual-risk models progression, integration of 

inflammatory biomarkers and PRS for accurate stratification of 

individuals present with huge risk for incident ASCVD, specifically those 

who may get clinical benefit from anti-inflammatory therapies [26]. 

Comparative risk of ASCVD by combined inflammatory and genetic 

status is demonstrated in table 2 [25,26]. 

Risk Group 10-Year ASCVD Event Rate (%) Relative Risk vs. Reference 

Low PRS + Low hsCRP 4.1 1.0 

High PRS + Low hsCRP 7.8 1.9 

Low PRS + High hsCRP 8.2 2.0 

High PRS + High hsCRP 14.3 3.5 

Table 2: Comparative Risk of ASCVD by Combined Inflammatory and Genetic Status 

†ASCVD: Atherosclerosis Cardiovascular Disease; PRS: Polygenic Risk Score; hsCRP: high-density C-Reactive Protein. 

6.2. Social Genomics: The Intersection of Social Determinants and 

Molecular Risk 

Distinct from prior sections on socioeconomic and psychosocial factors, 

this section explores the emerging field of social genomics, which 

investigates how SDOH interact with genetic and epigenetic mechanisms 

to influence ASCVD risk. Social adversity—including chronic stress, 

discrimination, and neighborhood deprivation—has been shown to induce 

pro-inflammatory gene expression profiles (the "conserved 

transcriptional response to adversity"), characterized by upregulation of 

NF-κB–dependent inflammatory genes and downregulation of antiviral 

responses [27]. 

Epigenome-wide association studies reveal that adverse SDOH can 

modify DNA methylation patterns at loci implicated in vascular 

inflammation and lipid metabolism, thereby modulating the penetrance of 

genetic risk [28]. For instance, individuals present with huge polygenic 

risk for CAD who also faces huge social deprivation suggested 

accelerated incidence of ASCVD, independent of conventional risk 

factors [29]. 

These findings suggest a "double jeopardy" model, wherein the genetic 

predisposition and adverse social environments intersection is responsible 

for disproportionate elevation in risk of ASCVD. Incorporation of social 

genomics into various risk prediction models may potentiate calibration 

and facilitate targeted therapeutic interventions in huge-risk, socially 

disadvantaged populations [30]. 

6.3. Multi-Omics Integration for Precision Risk Prediction 

While previous sections have demonstrated the individuals biomarkers 

and genetic scores additions, this section addresses the multi-omics data 

integration-encompassing proteomics, genomics, metabolomics and 

transcriptomics-into prediction of ASCVD RISK. Multi-omics 

approaches enable the identification of molecular signatures that reflect 

both inherited and acquired risk, providing a comprehensive view of the 

atherogenic process [31]. 

Recent prospective cohort studies have demonstrated that multi-omics 

risk scores, constructed from panels of plasma proteins (e.g., growth 

differentiation factor-15 [GDF-15], myeloperoxidase [MPO]), 

metabolites (e.g., trimethylamine N-oxide [TMAO]), and genetic 
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variants, outperform traditional clinical models in predicting incident 

ASCVD. For example, a C-statistic of 0.83 is achieved for 5-years 

ASCVD events on incorporation of a proteomics risk score > 50 proteins, 

in comparison to 0.72 for the PCEs [32]. 

Moreover, application of machine learning algorithms to mutli-omics 

datasets can uncover recent risk clusters, potentiate the novel 

endophenotypes assessment and personalized preventive options. The 

integration of multi-omics with EHR and SDOH data represents a critical 

frontier in the evolution of precision ASCVD prevention. Incremental 

predictive value of multi-omics models is shown in table 3 [32]. 

Model Type C-Static (5-Year ASCVD) Net Reclassification Improvement (%) 

Pooled Cohort Equatins 0.72 - 

Genomics + Proteomics 0.81 +18 

Multi-Omics (All Layers) 0.83 +25 

Table 3: Incremental Predictive Value of Multi-Omics Models 

†ASCVD: Atherosclerosis Cardiovascular Disease. 

6.4. Implementation Science: Bridging Precision Risk Models and 

Clinical Practice 

Distinct from prior discussions of AI and machine learning, this section 

addresses the challenges and strategies for implementing integrative risk 

models—incorporating inflammation, genetics, and SDOH—into routine 

cardiovascular prevention. Despite the promise of multi-dimensional risk 

scores, real-world uptake remains limited by barriers including data 

interoperability, clinician education, and patient acceptability 

Implementation science frameworks, such as the Consolidated 

Framework for Implementation Research, are being applied to optimize 

the integration of precision risk tools into clinical workflows [33].  

Key strategies include: 

• Embedding EHRs with risk calculators to facilitate point-of-

care decision support. 

• Provide training to clinicians in the interpretation of SDOH-

informed and multi-omics risk scoring methods. 

• Patient’s engagement in shared decision-making, with 

culturally tailored communication of benefit and risk. 

• Leveraging multidisciplinary teams and implementation 

champions to drive adoption. 

Findings of pilot studies demonstrate that the integrative risk models 

utilization can improve control of risk factor, patient satisfaction and 

statin initiation rates, specifically in high-risk, underserved populations. 

However, intense randomized implementation trials are required to 

quantify the clinical outcomes of ASCVD and health equity. 

6.5. Ethical, Legal, and Social Implications (ELSI) of Integrative Risk 

Prediction 

While previous reports have not addressed this dimension, the rapid 

evolution of integrative risk prediction raises critical ELSI. The use of 

genetic, inflammatory, and SDOH data in risk stratification introduces 

new challenges related to privacy, consent, data ownership, and potential 

discrimination.  

Key ELSI considerations include: 

• Genetic Privacy and Discrimination: Certain protections are 

provided by the genetic information nondiscrimination act, but 

gap remain specifically for disability and life insurance [34]. 

• Algorithmic Bias: Non-representative datasets trained 

integrative models may potentiate disparities in clinical care 

and risk assessment [35]. 

• Informed Consent: SDOH-informed and multi-omics 

complexity risk scores challenges informed consent 

conventional models, necessitating novel therapeutic strategies 

to risk patient autonomy and risk communication [36]. 

• Data Security: The aggregation of social, biomarker and 

genomics data potentiate the data risk misuse and breaches, 

requiring security frameworks and  

• The aggregation of genomic, biomarker, and social data 

increases the risk of data breaches and misuse, requiring robust 

governance and security frameworks and robust governance.  

Addressing these ELSI issues is needed to ensure that integrative risk 

prediction advancement translate into socially, trustworthy and equitable 

cardiovascular risk prevention.  

7.Future Directions: Ai, Precision Prevention, and 
Multidimensional Risk Models 

7.1. AI-Driven Risk Prediction: Beyond Traditional Variables 

While previous sections have demonstrated multi-model and EHR-driven 

risk assessment, this section will focus on AI algorithms next generations 

that leverage deep learning, natural language processing and federated 

learning in which unstructured data sources are utilized to extract nuanced 

risk signals.  Recent advances in deep neural networks have enabled the 

integration of longitudinal EHR data, imaging, and even clinical notes to 

predict ASCVD events with improved discrimination and calibration, 

surpassing conventional regression-based models [37]. For example, 

convolutional neural networks applied to raw electrocardiogram (ECG) 

data have demonstrated the ability to predict future myocardial infarction 

risk independently of traditional risk factors [38]. 

Federated learning-a privacy-preserving AI approach- enables the robust 

risk model training across various institutions without sharing patient data 

sensitively, thus addressing concerns about representativeness and data 

privacy. Natural language processing further augment risk assessment by 

extracting relevant behavioral determinants and social determinants, 

which are often omitted from structural datasets. Comparison of AI-

driven and traditional ASCVD risk models is demonstrated in table 4 

[37,38]. AI applications in assessment of ASCVD risk are demonstrated 

in figure 3. 

Model Type Data Inputs C-Statistic (Range) Unique Features 

Pooled Cohort Equations Demographics, Lipids, BP, Diabetes, Smoking 0.66-0.77 Population-based, limited variables 

Deep Learning (HER + Imaging HER, imaging, labs, unstructured notes 0.78-0.87 Learns complex patterns, dynamic 

Federated Learning Multi-centre HER, imaging 0.80-0.86 Privacy-preserving, scalable 

ECG-based AI Raw ECG signals 0.80-0.88 Detects subclinical risk, real-time 

Table 4: Comparison of AI-Driven and Traditional ASCVD Risk Models 
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†PCE: Pooled Cohort Equations; BP: Blood Pressure; ECG: Electrocardiogram; AI: Artificial Intelligence. 

 

Figure 3: AI applications in assessment of ASCVD risk. 

7.2. Dynamic, Time-Updated Risk Estimation 

Distinct from the static, baseline risk estimates provided by current 

calculators, emerging AI-enabled models are capable of generating 

dynamic, time-updated risk trajectories.  

With the objective to recalibrate an individual risk of ASCVD in real time, 

these models assimilate new laboratory data, lifestyle data, medication 

changes and clinical events on routine basis. This strategy is specifically 

useful for patients with evolving risk profiles such as those with new-

onset hypertension, incident diabetes or inflammatory biomarkers 

changes. 

Moreover, dynamic risk estimation supports adaptive prevention 

strategies, allowing clinicians to intensify or de-escalate therapies based 

on the most current risk assessment. For example, a patient whose risk 

increases due to rising hsCRP or low=density lipoprotein-cholesterol 

(LDL-C) despite therapy may warrant earlier initiation of anti-

inflammatory or lipid-lowering agents [8]. Static vs dynamic risk 

estimation in ASCVD prevention is demonstrated in table 5. 

Feature Static Models (PCE, SCORE2) Dynamic AI Models 

Risk Calculation Frequency Once (baseline) Repeated, real-time 

Data Inputs Baseline Clinical/lab data Time-varying, multi-modal 

Adaptation to New Events No Yes 

Clinical Utility Population-level Personalized, adaptive 

Table 5: Static vs. Dynamic Risk Estimation in ASCVD Prevention. 

†PCE: Pooled Cohort Equations; AI: Artificial Intelligence. 

7.3. Multidimensional Risk Models: Integrating Omics, Imaging, and 

SDOH 

While previous sections have discussed multi-omics integration and 

social genomics, this section emphasizes the convergence of multi-

layered data streams—genomics, proteomics, metabolomics, advanced 

imaging, and social determinants—within unified risk models. These 

multidimensional models are designed to capture the heterogeneity of 

ASCVD risk across diverse populations and to identify high-risk 

individuals who may be missed by traditional tools. 

For instance, the integration of PRS with CAC scoring and SDOH metrics 

has demonstrated superior risk stratification compared to any single 

domain alone [25]. Proteomic risk panels, incorporating dozens of 

circulating proteins, further refine risk prediction, particularly in 

intermediate-risk individuals [32]. Data domains in multidimensional 

ASCVD risk models are shown in table 6 [25] 

Domain Example Variables Incremental Value 

Genomics PRS, monogenic variants Early-life risk, family history 

Proteomics hsCRP, GDF-15, MPO, Lp(a) Inflammation, plaque instability 

Imaging CAC, carotid plaque, vascular age Subconical atherosclerosis 

SDOH Income, education, neighborhood, stress Healthy equity, access 

Clinical BP, lipids, diabetes, smoking Baseline risk 

Table 6: Data Domains in Multidimensional ASCVD Risk Models 

†PRS: Polygenic Risk Score; hsCRP: high-sensitivity C-Reactive Protein; GDF: Grow/Differentiation Factor; MPO: Myeloperoxidase; Lp(a): 

Lipoprotein(a); SDOH: Social Determinants of Health; BP: Blood Pressure. 
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7.4. Precision Prevention: Targeted Interventions Based on 

Individualized Risk 

The paradigm of precision prevention moves beyond risk prediction to 

actionable, individualized intervention. AI-augmented risk models enable 

the identification of distinct risk endotypes—such as inflammation-

dominant, lipid-dominant, or genetically driven ASCVD—each of which 

may benefit from tailored preventive strategies [26]. For example, 

individuals with high PRS and elevated Lp(a) may be prioritized for early 

PCSK9 inhibitor therapy, while those with persistent inflammation  

despite statins may benefit from anti-inflammatory agents such as 

colchicine or canakinumab [8]. 

In addition, multidimensional risk models facilitate shared decision-

making by providing patients with personalized risk trajectories and the 

projected benefit of specific interventions. Digital health platforms and 

mobile applications are increasingly being used to deliver individualized 

risk feedback, promote adherence, and monitor response to therapy in real 

time [22]. Precision prevention strategies by risk endotype are shown in 

table 7 [26]. 

Risk Endotype Key Features Targeted Intervention 

Inflammation- dominant High hsCRP, GDF-15, MPO Anti-inflammatory therapy 

Lipid- dominant High LDL-C, Lp(a), ApoB Statins, PCSK9i, Lp(a) inhibitors 

Genetic High PRS, monogenic variants Early screening, aggressive Rx 

SDOH-driven Low SES, high stress, poor access Community interventions, navigation 

Mixed Multiple domains elevated Multimodal, team-based care 

Table 7: Precision Prevention Strategies by Risk Endotype 

†hsCRP: high-sensitivity C-Reactive Protein; GDF: Grow/Differentiation Factor; MPO: myeloperoxidase; LDL-C; Low-Density Lipoprotein-C; 

Lp(a) Lipoprotein(a); ApoB: Apolipoprotein; PRS: Polygenic Risk Score; SDOH; Social Determination of Health; SES: Socioeconomic. 

7.5. Real-World Implementation and Model Validation 

While implementation science and ELSI have been discussed previously, 

this section focuses on the technical and operational challenges in 

deploying multidimensional AI risk models at scale. Rigorous external 

validation across diverse populations is essential to ensure 

generalizability and to mitigate algorithmic bias. Prospective studies, 

such as the PREVENTABLE and My Gene Rank trials, are evaluating the 

clinical utility, acceptability, and cost-effectiveness of AI-enabled and 

genomics-informed risk assessment in routine practice.  

Major key operational consideration includes interoperability with patient 

engagement, explainable AI interfaces development, existing HER 

systems and clinician education to support shared-decision making. 

Furthermore, continuous post-departmental monitoring is needed to 

ensure equity, assess performance drift and adapt to evolving clinical 

guidelines. Solutions and challenges in implementing multidimensional 

risk models are demonstrated in table 8 [21]. Atherosclerotic 

cardiovascular disease risk scoring and present landscape & future 

directions for precision prevention are demonstrated in Central 

Illustration. 

Challenge Solution/Strategy 

Data interoperability Standardized data formats, APIs 

Algorithmic bias Diverse training datasets, fairness auditing 

Clinician adoption Education, decision support tools 

Patient engagement Digital risk communication, apps 

Model drift Continuous monitoring, recalibration 

Table 8: Challenges and Solutions in Implementing Multidimensional Risk Models 
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Central Illustration: Atherosclerotic Cardiovascular Disease (ASCVD) Risk Scoring: 

Present Landscape and Future Directions for Precision Prevention. 

Conclusion 

ASCVD risk prediction has evolved from traditional, population-based 

models—such as the PCE and SCORE2—to a new era of precision 

prevention that integrates genomics, inflammation, advanced biomarkers, 

imaging, and SDOH. A valuable foundation for population-level 

prevention has been provided by conventional risk scores, but their 

clinical utility is limited due to various drawback such as under 

performance in diverse populations, moderate predictive power and 

omission of significant risk modifiers like genetic susceptibility, 

socioeconomic factors and chronic inflammation.  

Risk stratification in individuals has been improved with the addition of 

various biomarkers (e.g., hsCRP, Lp(a)), CAC scoring, and PRS), 

specifically in individuals with intermediate-risk and atypical risk 

profiles. In addition to this, need for multidimensional integrative models 

has been limited due to interconnection between inflammatory and 

genetic pathway, as well as adverse effect of social environment on 

molecular risk. 

The future of prevention of ASCVD exist in the clinical utilization of 

dynamic, multidimensional and AI-enabled risk models that assimilate 

SDOH, imaging, clinical and omics date to deliver adaptive, equitable and 

personalized care.  These recent advancements potentiate predictive 

accuracy and ability to assess distinct risk endotypes and guide targeted 

therapeutic interventions-such as early lipid-lowering drugs, anti-

inflammatory therapies or community-based options-tailored to 

individual profiles risk. However, successful implementation into clinical 

field will need rigorous validation, attention to equity and ethical concerns 

and strict implementation science to ensure that across all population, 

precision prevention benefits are realized.  
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