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Abstract: 

Background/Aim: Bipolar (BD) and depressive disorders (DD) are common psychiatric conditions marked by reduced 

neuronal cells and impaired neurite growth, leading to disrupted neuronal connectivity and symptoms characteristic of BD or 

DD. Current treatments poorly address neuronal damage. First-line treatments like lithium (Li) stabilize mood swings but 

high doses cause side effects. Magnesium (Mg), through a distinct mechanism, partially stabilizes mood. Studies on 

synergistic effects of Li and Mg are scarce. We evaluated the neurite growth properties of one of the richest source of 

bioavailable lithium (9737 µg/L) and magnesium (243 mg/L) on the growth of neurones and neurites in vitro. 

Materials and Methods: Commercially available rat cortical neurone cultures were exposed on day 1 to 1%, 3%, 5% 

Hydroxydase water, or to the same volumes of Li-carbonate solution (20 µg/mL) as positive control, or culture medium 

containing no lithium as negative control. Number of neurites per cell and mean neurite length were analysed on days 1, 3, 

and 7 using microscopic imaging. 

Results: The test substances showed no cytotoxic effects. Li-carbonate had no significant effect on neuronal growth, neurite 

number or length. Hydroxydase water increased neuronal cell numbers (+11.54%) and enhanced neurite growth (+37%) and 

elongation (+47%) per cell by day 7. These effects were observed across all concentrations and began as early as day 1. 

Conclusion: Hydroxydase water significantly enhances neuronal differentiation, neurite sprouting, and elongation, 

suggesting improved neuronal connectivity and neurotransmission in vivo. The synergistic action of bioavailable Li+ and 

Mg2+ presents a natural and effective complement to synthetic drugs for BD and DD treatment. 

Key words: neuronal cell; hydroxydase; neurite sprouting; neurite length; lithium; magnesium; depression; bipolar 

disorders 

Abbreviations 

BD      : (bipolar Disorder) 

DD      : (Depressive disorder) 

BDNF : (brain-derived neurotrophic factor) 

HPA    : (hypothalamic-pituitary-adrenal) 

GABA  : (Gamma-aminobutyric acid) 

NMDA  : (N-methyl-D-aspartate) 

Introduction 

Bipolar disorders (BD) affect approximately 5% of the global population. 

Onset typically occurs in late adolescence or early adulthood, with equal 

prevalence among males and females. Acute or chronic depressive 

disorders (DD) concern 5-10% of the population, with onset frequently in 

the mid-twenties [1] 

It has been clearly established that both BD and DD are associated with 

reduced neurogenesis, particularly in the hippocampus [2].The cause(s) 

and physiopathology of these diseases are not well understood, but 

chronic stress, specific traumatic events, and certain genetic factors are 

considered contributors that trigger neuronal degeneration and the disease 

[3].Reduced numbers of neurites in brain regions such as the prefrontal 

cortex and hippocampus, along with fewer neurites per neuron, shorter 

neurite length, and underdeveloped glial cells, are observed in BD and 

DD patients [4]. These neuronal changes contribute to impaired synaptic 

connectivity, poor neurotransmission, and, consequently, impaired brain 
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functioning [5]. BD and DD also involve dysregulation of brain-derived 

neurotrophic factor (BDNF), which plays a key role in neuronal survival 

and synaptic plasticity [6]. Chronic inflammation, oxidative stress, and 

hypothalamic-pituitary-adrenal (HPA) axis dysfunction further 

exacerbate these impairments, leading to disruptions in serotonin, 

dopamine, and glutamate neurotransmitters [7]. 

Understanding these neuronal changes has therapeutic implications. 

Interventions aim to enhance and stabilize neurotransmission, as well as 

promote neurogenesis and neurite outgrowth [8]. Antidepressants, mood 

stabilizers, and lifestyle modifications, such as exercise, help mitigate 

some cognitive and emotional deficits in BD and DD, but no specific 

treatment directly addressing neuronal damage is available [9,10]. 

The most used and effective treatment is Li, which stimulates BDNF 

production and improves synaptic plasticity. However, there is little 

evidence that Li promotes neuronal and neurite growth [11,12]. While 

neuroprotective properties of Li are recognized, its direct impact on 

neurite outgrowth is inconsistent, likely due to the difficulty of evaluating 

neuronal or neurite growth in BD patients. Similarly, magnesium (Mg) 

may help promote neuronal health and minimize BD symptoms akin to 

Li, but its use remains limited[13]. 

Li stabilizes mood and modulates neurotransmitter release through 

intracellular signalling pathways, including inositol monophosphate and 

glycogen synthase kinase-3β (GSK-3β), and enhances neurotrophic factor 

expression (e.g., BDNF). While its neurogenic effects are modest and 

insufficient to fully reverse neuronal atrophy in BD and DD [14,15]. 

Other treatments, such as valproate, benzodiazepines, and antipsychotic 

drugs, primarily regulate neurotransmitters but do not address neuronal 

structural deficits [16]. Novel therapies targeting neurogenesis and neurite 

repair are under investigation, including neurotrophin mimetics and 

cytokine-based therapies [17,18]. 

Magnesium (Mg), involved in neurotransmitter regulation, synaptic 

plasticity, and neuroprotection, is emerging as a potential adjunctive 

therapy for BD and DD. Mg stabilizes glutamate and GABA levels, 

reduces oxidative stress, and minimizes neuronal inflammation[19]. 

Studies have shown low Mg levels correlate with increased depressive 

symptoms in BD patients, and supplementation enhances mood 

stabilizers’ efficacy [20,21]. It has been observed that Mg 

supplementation could be as effective as lithium in treating rapidly 

cycling bipolar patients[22].  

As Li is also considered to reduce the frequency and severity of manic 

and depressive episodes in BD, while Mg supplementation helps stabilize 

mood by improving neurotransmission, combining Li with Mg in the 

treatment of bipolar disorder (BD) is now generating considerable interest 

due to their complementary mechanisms, which may enhance therapeutic 

outcomes [13,23]  

Currently, Li and Mg are usually administered orally in solid dosage 

forms such as tablets which often results in suboptimal bioavailability, 

potentially limiting their therapeutic efficacy. Factors such as 

gastrointestinal pH and interactions with food can affect the absorption, 

leading to very low serum concentrations and necessitating careful 

monitoring to avoid toxicity. Secondly, the oral administration also leads 

to higher absorption of minerals when the tablet is disintegrated, leading 

to much higher serum concentrations for a very short period which may 

be toxic, followed by low pharmacologically inactive blood levels 

throughout the day [24]. Similarly, solid forms, especially those 

containing poorly soluble salts like oxides, sulphates, or chlorides, exhibit 

limited absorption due to competition with other ions in the 

gastrointestinal tract. Liquid preparations also contain these salts which 

are poorly absorbed.  

In contrast, liquid formulations, particularly those containing Li+ and 

Mg2+ in ionic forms, may offer enhanced bioavailability. The immediate 

availability of ions in these solutions may facilitate more efficient 

absorption in the small intestine, potentially leading to more consistent 

therapeutic effects [25]. This improved absorption could allow for lower 

dosing, reducing the risk of side effects associated with higher doses of 

tablet forms and probably long-lasting therapeutically active serum levels 

throughout the treatment period. 

Hydroxydase is the most Li+-rich water in the world (8-9 mg/L), equally 

containing as high as 243 mg/L Mg2+. Being a perfectly stabilized natural 

association of Li+ and Mg2+ in an ionized bioavailable form, our aim was 

to evaluate whether synergistic effects of these two elements could help 

grow neurons and neurites, a prerequisite for the treatment of BD and DD. 

To better quantify the effects of Hydroxydase, we used in vitro neuronal 

cell cultures [27] and compared the efficacy against Li-carbonate, the 

most common salt used in solid tablets.  

The objectives were to check whether a naturally stabilized, bioavailable, 

and ionized form of Li+ and Mg2+ which can be easily and rapidly 

absorbed and used by the neuronal cells, could help neuronal cell growth 

as well as stimulate the growth and the length of the neurites, the basic 

requirements for an effective treatment of BD /DDs.  

Materials and Methods 

Test products: Cell culture medium containing 1% serum was used for 

cell controls and for test product dilutions. All test products were added 

in the culture medium at a volume not exceeding 5% total culture medium 

volume. Li-carbonate stock concentrations were prepared by dissolving 

2.0 mg Li-carbonate salt in 10 ml (200 µg/ml) culture medium. The 

concentration used for experiment assumed that for a human of 70 kg, 600 

to1200 mg of Li-carbonate is usually administered as daily dose, 

equivalent to 8 to 16 mg/kg (8-16 µg/g). These doses maintain a blood 

concentration of about 22-45 Mg/L (0.6 – 1.2 mEq/L or 22 to 45 µg/ml) 

[27,28]. For in vitro testing, we prepared culture mediums containing 20 

µg/ml (1%), 60 µg/ml (3%) and 100µg/ml (5%) representing mean to 

double concentrations of Li carbonate to which neuronal cells are likely 

to be exposed during Li therapy.  

Hydroxydase water containing 9737µg/L Li+ and 243 mg/L Mg2+ was 

used in 200 ml, no air contact filled glass bottles. Hydroxydase water was 

used unchanged at 1%, 3%, and 5% concentrations in the culture medium. 

Each experiment was performed in triplicate and repeated at least twice. 

Mean values of minimum 6 tests were then calculated[29]. 

Cell cultures: Commercially available cryopreserved rat cortical neurons 

were purchased (A10008041, Invitrogen) and were cultured as per the 

suppliers’ recommendations using a slightly modified method as 

described by Facci et al [30]. In short, cells were quickly thawed by gently 

spinning in a 37°C water bath for about 1–2 minutes and then transferred 

to a 50 mL sterile tube. 20 mL of warmed culture medium (neurobasal 

medium, containing 2mM L-glutamine, antibiotics and 4% foetal bovine 

serum), was added to the cell-containing tube. 100 μl of medium 

containing 103 cells /ml density was introduced in each of the 12-wells of 

culture plate (Corning) coated with poly-D-lysine and laminin. Cells were 

then incubated in a 37° C humidified incubator with 5% CO2 for at least 

1h to allow cell attachment. The culture medium was then replaced by 

1ml culture medium containing 1% serum and desired concentrations 

(1%, 3%, or 5%) of the test products in the culture medium. Each 

experiment was repeated at least thrice. 

Image analyses:  Cell cultures were imaged after 1, 3, and 7 days of 

culture as described by M. Pool et al [26]. On days 1 and 3, images of 

each plate were taken with an inverted microscope, making sure to keep 

the settings constant between images. The culture dishes were returned to 

the incubation chamber until final image analyses and fixation on day 7.  

Neuronal cell count and neurite growth measurements: During the 

initial step, we used standard microscope image analyses to determine cell 

number, neurite branches originating for the cells, and neurite length as 

described by Rønn et al [31]. The mean number of neuronal cells was 
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quantified by counting total number of neurons in a fixed area of the photo 

for all the 3 images per dilution at each time point. The total neurite length 

per cell was estimated by counting the number of intersections between 

neurites using conventional computer-assisted microscopy to measure the 

length. The absolute length of neurites per cell was subsequently 

estimated from the number of neurite intersections per cell. 

These data obtained through conventional image tracing method were 

further confirmed through freely available Fiji ImageJ package, including 

the NeuronJ plugin for neurite tracer analysis [32]. The plugin analyses 

fluorescence microscopy image processor measures number of cells / 

area, the neurite outgrowths, and the neurite length of each neuron visible 

in the defined area of cell culture image. The results are presented as mean 

number of cells, number of neurites, and length of neurites (µm) in 

minimum 2 cultures (n=6). The length of neurite(s) in each cell was 

measured for all the cells present in the observation field, added, and mean 

value per cell (µm) was determined.  

Statistical analysis: Student t test was used to compare the mean and ± 

SD of the mean between negative cell cultures treated with culture 

medium and Hydroxydase or lithium carbonate treated groups. One way 

ANOVA was used to compare the differences between controls and 

Hydroxydase.  

Results 

On day 7, in Hydroxydase-treated cell cultures, a total of 22 cells are 

visible while other cells are not attached to the surface. The cells have 

neurites but not clearly visible. After NeuronJ processing, the neurite 

growth of each cell is clearly visible and can be measured. 

The images in Figure 1 and 2 are provided as an example to illustrate the 

technique used as well as the parameters measured in this study. The 

images in Figure. 1 and Figure. 2 are from Madeline pool et al. [26]. 

 

Figure 1: Phase contrast image before (A) and after (B) preparation in ImageJ. The neurites in (B) are much more visible and clearer to calculate 

the number of cells and neurite growth. Bar = 50μm. 

 
 

All the images in Figure. 2 represent the same cell culture. The 1st image 

(Figure. 2-A) represents neuron cell culture observed under the phase 

contrast microscope, the same culture in image analysis (Figure. 2-B) and 

under neurite tracer (Figure. 2-C). The colour of the trace in Fig. 2-C 

indicates whether the neurites are originated from the soma (primary 

neurite, tracing in red arrows), or a secondary neurite (tracing in blue 

arrows). 

All neurites, whether primary or secondary, are considered as individual 

neurons and the total length of all the neurites originating from a neuron 

was measured. The data obtained by counting neurite intersections 

correlated statistically with results obtained using conventional 

microscopic image tracing and through Neurite Tracer, a neurite tracing 

plugin program. 

Neuron observations on days 1, 3, and 7 for the three test product 

concentrations: The results are shown in Table 1. 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6057772_june-16-186f1.jpg
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Concentration 

exposed 

Day after 

treatment 

Mean N° of cells 

(n=3) 

Mean N° of 

neurites/cell (n=3) 

Mean length of neurites 

µm (n=3) 

Group 1: Culture medium % 

1.0% Day 1 14,2 12.32 ± 0.21 169.25 ± 18.36 

 Day 3 16,6 14.51 ± 0.41 145.65 ± 23.40 

 Day 7 16,1 12.55 ± 0.55 139.52 ± 31.64 

3.0 Day 1 15,3 13.26 ± 0.60  178.15 ± 22.80 

 Day 3 16,6 14.35 ± 0.74 156.28 ± 14.32 

 Day 7 15,4 16.41 ± 0.29  155.20 ± 27.70  

5.0% Day 1 17,0 13.92 ± 0.15 183.08 ± 32.05 

 Day 3 15,9 15.28 ± 0.55 174.08 ± 30.07 

 Day 7 16,2 16.15 ± 0.48 174.38 ± 19.37 

Mean  15.92  ± 0.85 14.30 ± 1.46 163.95 ± 15.30 

Group 2: Lithium carbonate salt solution 20 µg/ml 

1.0% Day 1 13,6 13.44 ± 0.53 134.15 ± 31.34 

 Day 3 15,5 14.10 ± 0.65 181.30 ± 18.31 

 Day 7 17,8 12.10 ± 0.37 157.39 ± 30.48 

3.0% Day 1 16,2 14.15 ± 0.28 156.38 ± 34.39 

 Day 3 17,7 13.95 ± 0.48 192.88 ± 27.28 

 Day 7 15,6 13.15 ± 0.82 175.66 ± 36.85  

5.0% Day 1 16,7 15.11 ± 0.74 169.32 ± 41.25 

 Day 3 17,3 14.26 ± 0.41 203.47 ± 29.18 

 Day 7 16,0 15.68 ± 0.35 184.36 ± 25.66 

Mean  16.26 ± 1.31 13.99 ± 1.04 172.76 ± 21.12 

Group 3 : Hydroxydase water 

1.0% Day 1 14.4 15.32 ± 0.62 142.99 ± 64.6 

 Day 3 17.5 16.30 ± 1.21 241.44 ± 72.00 

 Day 7 18.1 18.31 ± 0.87 279.50 ± 65.27 

3.0% Day 1 15.6 15.68 ± 0.71 188.77 ± 59.34 

 Day 3 20.9 19.14 ± 0.84 231.88 ± 94.44 

 Day 7 18.6 23.35 ± 0.45 346.63 ± 96.74  

5.0% Day 1 16.1 16.36 ± 0.64 169.45 ± 84.31 

 Day 3 20.1 21.10 ± 0.59 264.87 ± 105.81 

 Day 7 22.4 26.40 ± 1.26 375.08 ± 61.29 

Mean  18.19 ± 2.61 19.10 ± 3.829 248.96 ± 77.58 

Table 1: Effect of exposure of three different concentrations of either culture medium, Li-carbonate salt solution 20µg/ml or Hydroxydase Li+ + Mg2+ 

rich water on rat hippocampal neurons in vitro. The observations were made after 24h (Day 1), and on days 3 and 7 on the growth of neuron cells, as 

well as on the mean number of neurites and the mean neurite length (µm) per cell. The values represent observations in 3 cultures for total number of 

cells per well, the mean number of neurite outgrowth in the cells of a culture well and the total length of neurites in these cells (µm) ± SD of the means.  

The results from this study highlight several important observations 

regarding the effects of Hydroxydase water compared to the culture 

medium and Li-carbonate salt solution 20µg/ml on neuronal growth 

parameters.  

Cell culture controls: At the start of the study, the neuron cultures were 

nearly identical with respect to the number of neuronal cells, number of 

neurites per cell, and the neurite length. This indicates that the 

experimental conditions began with comparable baselines, ensuring the 
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observed effects are attributed to the treatments. On day 0, when the cells 

were cultured, there were no neurites. This reinforces that all neurite 

growth observed during the study resulted from the treatments applied 

during the experimental period. 

Effect on mean number of neuron cells: The mean number of cells with 

three different concentrations, in control cultures exposed only to the 

culture medium was 15.92±0.85 and 16.26±1.31 in the Li-carbonate 

control group, showing no significant difference between these two 

groups (Figure. 3). Cells treated with 1%, 3% or 5% Hydroxydase water, 

the number of cells was slightly higher compared to culture medium 

exposed controls and Li-carbonate group. While the difference is not 

statistically significant (18.19±2.61), it reflects the potential of 

Hydroxydase to support cell proliferation more effectively as well as 

absence of cytotoxic effects at all the test concentrations for the three test 

products. 

 
Figure 3: Effect on mean number of neuronal cells in cell cultures exposed to 1%, 3%, and 5% concentrations of culture medium (white bars), Li-

carbonate solution (grey bars) and to Hydroxydase water (black bars). The bars represent mean values observed on days 1, 3, and 7 for the three test 

product concentrations for each test liquid ± SD. 

Number of neurites per Cell: Although Hydroxydase water had little 

effect on the growth of the number of cells compared to the controls, its 

effect on neurite formation was much more pronounced (Figure. 4). In 

the Hydroxydase group, the mean number of neurites was nearly up to 

30% higher (19.10±3.8) compared to the culture medium (14.30±1.46) 

and the Li-carbonate group (13.99±1.04) This demonstrates that 

Hydroxydase significantly stimulates the generation of new neurites, 

indicating a strong effect on neuronal differentiation. 

 
Figure 4: Effect on the mean number of neurites on day 1, 3, and 7 exposed to culture medium (white bars), Li-carbonate solution (grey bars) and to 

Hydroxydase water (black bars) ± SD of the mean. The bars represent mean values observed on days 1, 3, and 7 for the three test product concentrations 

for each test liquid ± SD. 
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Figure 5: Effect on the length of neurites in µm on day 1, 3, and 7, exposed to culture medium (white bars), to Li-carbonate solution (grey bars) and 

to Hydroxydase water (black bars) ± SD of the mean. The bars represent mean values observed on day 1, 3, and 7 for the three test product 

concentrations for each test liquid ± SD. 

Effect on the mean length of neurites: Neurite growth started on Day 1 

in all groups and progressed steadily up to Day 7 with all treatments 

showing gradual increases in neurite length. However, the mean growth 

of neurites was significantly faster in the Hydroxydase group 

(248.96±77.58). By the end of the study on day 7, the neurite length in the 

Hydroxydase group was nearly 47% higher compared to both the culture 

medium (163.95±15.30) and Li-carbonate group (172.76±21.12). This 

suggests that Hydroxydase water not only stimulates neurite generation 

but also promotes rapid neurite elongation. 

The findings from this study clearly demonstrate that while Hydroxydase 

water has a modest effect on cell proliferation, it remarkably improves the 

growth and elongation of neurites within a short period of time. This 

effect is observed across all three concentrations of Hydroxydase water. 

The increased number and length of neurites highlight Hydroxydase 

water’s potential as a powerful enhancer of neuronal differentiation and 

connectivity which should promote neurotransmission in vivo. 

Discussion 

Neuronal degeneration is a significant feature observed in mood disorders 

such as BD and DD. This degeneration is characterized by reductions in 

neuron density, neurite numbers, and neurite length [5]. Studies have 

demonstrated poor neurite density in neuron cultures treated with serum 

from patients with bipolar disorder, particularly in the late stages of the 

illness [33]. This neuronal loss minimizes synaptic connections and 

impairs the transmission of electrical signals, leading to weakened 

neuronal networks that regulate mood and behaviour [2]. Slower and less 

efficient transmission of neuronal action potentials further exacerbates 

functional impairments in brain circuits involved in emotional regulation 

and stress response. These impairments contribute to mood instability, 

memory deficits, impaired decision-making, and episodes of mania or 

depression [3,34]. Additional contributors include mitochondrial 

dysfunction, reduced levels of brain-derived neurotrophic factor (BDNF), 

and overactivation of glutamate receptors such as N-methyl-D-aspartate 

(NMDA). The combination of these neurodegenerative factors leads to 

BD and DD [35,36]. Therefore, only treatments that reverse 

neurodegeneration and stimulate neuronal growth can effectively 

minimize the symptoms of BD and DD. 

Current treatments for BD and DD primarily address symptoms without 

focusing on repairing or regenerating neurons [37]. Antidepressants and 

mood stabilizers, such as selective serotonin reuptake inhibitors (SSRIs)  

and anti-inflammatory drugs, provide symptomatic relief but fail to 

reverse neuronal damage. Neurotrophic therapies like lithium Li aim to 

enhance BDNF levels, promoting neuronal growth and repair; however, 

their efficacy remains limited. Furthermore, Li salts cause multiple side 

effects, including tremors, weight gain, and organ toxicity, necessitating 

regular blood level monitoring [38]. The use of Mg, either alone or in 

combination with Li, is also underexplored. 

The results of this study demonstrate that exposure of neuronal cells to Li 

bicarbonate alone is non-cytotoxic at concentrations as high as 100 µg/ml, 

with no significant effects on neurite generation or length. The median 

daily doses of Li carbonate or other Li salts range between 600 and 1200 

mg/day, administered twice or thrice daily, generating blood 

concentrations between 0.6 and 1.2 mEq/L (22–44 mg/L). These serum 

concentrations are too low compared to the doses administered [27]. 

Although Li is a powerful mood-stabilizing medication, its exact 

mechanism of action remains unclear, and it has a narrow therapeutic 

range due to poor intestinal absorption [39]. Thus, finding a safer 

alternative form of Li, particularly for long-term treatment, is essential. 

Hydroxydase, a natural mineral water from the volcanic Auvergne region 

in France, is rich in ionized lithium (Li+ 9740 µg/L) and magnesium 

(Mg2+ 243 mg/L). It has been used since 1923 for improving physical and 

emotional well-being [40] and as a cellular function enhancer [41]. While 

the exact mode of action underlying its mood-stabilizing properties is 

unknown, the neuroprotective and neurite growth-promoting effects 

observed in this study may explain its efficacy. These effects were not 

seen with Li alone, suggesting that the richness of Hydroxydase in ionized 

and bioavailable Li and Mg and their synergistic effects on brain neurons 

are responsible for these properties. Mg levels are known to be low in 

patients treated with Li-salts [42]. Compared to synthetic Li salts, Li+ in 

Hydroxydase is likely to better stabilize neurotransmitter levels, promote 

neuronal growth, and repair structural brain alterations associated with 

mood disorders. Mg complements Li by acting as an NMDA receptor 

antagonist, reducing neuronal excitation, modulating neurotransmitter 

release, and protecting neurons from oxidative damage and inflammation. 

The exact synergistic mode of action of Li and Mg on neuronal growth 

still remains unexplored but may have a protective effect on neuronal 

degeneration through multiple pathways including stimulation of anti-

aging gene functions. For instance, it has already been demonstrated that 
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anti-aging gene Sirtuin 1 is critical to neuron proliferation, differentiation 

and survival, where Mg and Li may play a role of activator, minimizing 

neuronal degeneration and occurrence of BD/DD [43,44]. 

The balanced composition of Li and Mg in Hydroxydase is likely to 

enhance their combined efficacy, providing consistent therapeutic effects 

without the peaks and troughs associated with tablet-based treatments 

containing Li salts, such as Li carbonate [45]. Delivered in small, 

measured doses, Hydroxydase ensures uniform absorption and avoids the 

cytotoxicity often linked to synthetic drugs. It is bottled directly at the 

source to preserve its ionized minerals, ensuring long-term stability and 

effectiveness. 

Despite its therapeutic potential, Hydroxydase remains underutilized due 

to the absence of clinical trials examining the synergistic effects of Li and 

Mg. As a natural product, it cannot be patented, making it less attractive 

to pharmaceutical companies. Nevertheless, its unique composition and 

historical efficacy position it as a valuable alternative for managing BD 

and DD. 

Limitations of the study: This study was conducted using in vitro 

neuronal cultures, a controlled environment that excludes neurohumoral 

influences present in vivo. As such, the observed synergistic effects of Li 

and Mg on neuronal growth may not fully translate to in vivo conditions. 

Furthermore, the test substance, Hydroxydase water, contains not only 

high concentrations of Li and Mg, but also various other minerals and 

trace elements, which may have contributed to the observed effects. 

Therefore, caution must be exercised when extrapolating these in vitro 

findings to potential therapeutic outcome. 

Conclusion 

Further research is needed to validate and explore the therapeutic benefits 

of ionized and bioavailable lithium (Li) and magnesium (Mg) as a 

synergistic, safer, and natural alternative to conventional therapies for 

treating BD and DD. By addressing the underlying causes of neuronal 

degeneration, Li+Mg treatments hold promise for more effective 

management of BD and DD. 
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