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Abstract 

Neonatal epilepsy, a serious neurological condition in newborns, is typically marked by irregular brain activity 
that results in repeated seizures. This could have detrimental effect on neurodevelopment and may raise risk of 
cognitive and behavioral abnormalities. In order to prevent long-term neurological damage and developmental 
delays, an accurate detection of such seizures is crucial. Neonatal seizures can be subtle and may not exhibit any 
clear physical signs and hence, complicating timely diagnosis and treatment. To assist in diagnosis, 
electroencephalogram (EEG) can analyze, but manual inspection is time-consuming and burdensome for 

neurologists. Therefore, an automated EEG review would enable more frequent monitoring of neonates at risk. 
Hence, an automated system for detecting seizures has been created, trained on multichannel annotated EEG 
recordings from 79 full-term neonates who were admitted to Helsinki University Hospital. The system extracts 
wavelet coefficients from 10 seconds EEG segments using multilevel Daubechies 4 (db4) wavelet decomposition 

and uses these features to train a 2-Dimensional Convolutional Neural Network (2D-CNN). This model has 
achieved 100% accuracy, sensitivity, and F1-score, outperformed existing state-of-the-art methods and provided 
a reliable solution for automated seizure detection. 

Keywords : epilepsy ; electroencephalography ; deep learning ; wavelet decomposition ; daubechies 

transform ; convolutional neural networks 

 

Introduction 

Neonatal seizures, the most commonly encountered neurological disorder 
often indicating underlying brain dysfunction. The neonatal period is 
usually considered to be the first 4 weeks/28 days of a full-term newborn’s 
life. This is critical stage of brain growth and development [1]. When 
compared with adults and children, it was found that neonates are more 

susceptible to seizures because of incomplete inhibitory control 
mechanisms and a higher ratio of excitatory neurotransmitters. These 
seizures carry significant risks, including neuronal damage and long-term 
neurodevelopmental impairments. It is estimated that around 7-10% of 
neonates are at a risk of death while, 23-50% are likely to develop some 
abnormality [2]. Unlike seizures in older populations, neonatal seizures 
often lack physical signs, making diagnosis particularly difficult [3]. 
While various neuro-imaging and signal processing techniques have been 
explored, electroencephalography (EEG) remains the benchmark for 

seizure detection particularly in neonates due to its cost-effective, 
noninvasive nature and remarkable capability to capture real-time 
electrophysiological activity. However, interpreting neonatal EEG 
requires considerable clinical expertise and is also susceptible to 
variability and subjectivity in experts’ opinions [4,5]. This issue led to a 

burgeoning development of automated, computer-aided seizure detection 
systems. 

Early approaches focused on long-established data-driven machine 
learning (ML) techniques. 

Machine learning-based classifiers were mostly fed features are extracted 

through various domain analysis such as time or frequency [6]. Machine 
learning approaches mainly comprises two parts: feature extraction and 
classification. Classifiers like Naïve Bayes classifiers, Support Vector 
Machines (SVMs) and Random Forests are commonly used [7]. 
Numerous techniques like Discrete Wavelet Transform, Principal 
Component Analysis, and signal chunking have been used for feature 
extraction. Many studies used above techniques and achieved accuracies 
up to 99% with Naive Bayes classifier [8], and around 100% using SVM 
classifiers [9]. For instance, Biswal et al. [10] utilized a Naïve Bayes 

classifier to analyze 3,277 EEG reports, which were categorized based on 
the presence or absence of epileptiform discharges or seizures. This 
approach resulted in an AUC of 99.05%. Meanwhile, Runarsson et al. 
[11] created a real-time neonatal seizures detection system using Support 
Vector Machines (SVM) and half-wave attribute histograms. This system 
demonstrated high specificity (up to 100%) and sensitivity (over 80%). 
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However, the requirement of handcrafted features can limit scalability 
and generalizability in machine learning methods. 

Recent advances in arena of deep learning (DL) had considerably 
improved performance in automated seizure detection. Models such as 
Convolutional Neural Networks (CNNs), Long Short-Term Memory 
(LSTM) networks, and hybrid architectures such as CNN-LSTM and 
CNN-RNN, can automatically extract and learn useful features from raw 
EEG data [12]. Gramacki et al. [13] trained a deep learning framework on 

chunks of EEG signals obtained from sliding window technique, resulting 
in an average accuracy of 96-97% on a Helsinki dataset. Another study 
by Hogan et al. [ 2] used same dataset and trained a CNN model and 
achieved AUC as 0.982. Whereas, an approach by O'Shea et al. [14] used 
two distinct CNNs on a large clinical dataset, and found out that the 11-
layers deep architecture significantly surpassed the performance of the 
shallower architectures, boosting the accuracy from 82.6% to 86.8%. 
Furthermore, O'Shea et al. [15] proposed a fully CNN model on raw 
multi-channel EEG signals leveraging weakly labeled data to enhance 

training efficiency and achieved an high accuracy of 98.5%. To determine 
the severity levels of neonatal epileptic episodes in actual medical dataset, 
Debelo et al. [16] employed a deep CNN which was quite efficient with 
accuracy, specificity and precision to be around 92%. An innovative 1D-
CNN model was suggested by Sameer et al. [17] with remarkable 
accuracy up to 99.83% using only an average of seven epochs for training 
resulting in a substantial reduction in training time. Li et al. [18] 
introduced a 1-dimensional convolutional neural network (1D-CNN) 

model that incorporates meta-learning, which involves continuously 
adjusting the model's weights until an optimal weight configuration is 
reached. This model achieved an average performance of over 92.63% in 
sensitivity, specificity, and F1 score. Meanwhile, Ullah et al. [19] 
proposed a pyramidal 1D-CNN to address the challenge of a large number 
of learnable parameters, as it uses 61% fewer parameters compared to 
traditional CNN models. On the other hand, many researches used “Long 
Short-Term Memory (LSTM)” along with CNN model to enhance the 

performance of automated neonatal seizure detection. Pandey et al. [20] 
suggested a CNN-LSTM model classifying signals as normal, preictal, 
and seizure instances and is evaluated through a tenfold cross-validation 
method, yielding impressive results with accuracy, sensitivity and 
specificity around 99.33%. Abbasi et al. [21] employed Auto-regressive 
Moving Average (ARMA) and Hurst Exponent methods and used LSTM 
architecture on a publicly accessible dataset achieving classification 
accuracies of up to 95% for multiclass scenarios and 98% for binary 

classifications. Meanwhile, Jaafar et al. [22] suggested a system that 
trained the LSTM model on data segments. To correctly evaluate the 
performance of trained model, a 5-fold cross-validation process was used, 
and the model reached an impressive accuracy of 97.75%. Apart from 
basic LSTM architecture, Deepa et al. [23] deploy a “Bidirectional-Long 
Short-Term Memory (Bi-LSTM) model”, normalized using 
MinMaxScaler, on well-known CHB-MIT database and achieved 99.55% 
accuracy. The research highlights the necessity of rigorous data pre-
processing because of noise and artifacts presence in EEG signals. 

Another study by Alharti et al. [24] achieved a notable accuracy of 
96.87% by employing a model incorporating a 1D-CNN, Bi-LSTM, and 
attention mechanisms. Similarly, using attention mechanism. Zhou et al. 
[25] introduced a “Lightweight Multi-Attention Network, LMA-

EEGNet”, which utilizes dilated depth- wise separable convolution (DDS 
Conv) [25] for extracting features and employs point-wise convolution 
[25] and at last used global average pooling for the purpose of 
classification. This method gave accuracy of 95.71% and an AUC of 
0.9862. Convolutional autoencoder used by Wang et al. [4] on Helnsinki 
dataset rendered a high discriminative ability to detect seizures, with an 
accuracy of 92.34%, precision of 93.61%. Besides the remarkable 
performance of one-dimensional CNN, many recent studies used multi-

dimensional CNN. Tanveer et al. [26] ensembled three two-dimensional 
CNN and then used k- fold cross validation(k=10). The final model 
generated mean accuracy of 96.3% and AUC of 99.3 %. 

Abderrahim et al. [27] proposes four distinct hybrid deep learning 
models—Modif-CNN, S-CNN, Comb- 2CNN and CNN-SVM, amongst 
which, the Modif-CNN model, achieved an impressive 97.96%. Some 
other hybrid methods were also used for classification such as Visalini et 
al. [28] introduces a Deep Belief Network (DBN)-based approach with 
including the use of a “Triplet Half-Band filter and Wavelet Packet 

Decomposition” resulting a high accuracy at 98.7%. Raeisi et al. [29] 
presents a novel approach using a “Class-Imbalance Aware and 
Explainable Spatio-Temporal Graph Attention Network (ST-GAT)” 
which demonstrates high accuracy, achieving an average area under the 
curve of 96.6%. 

Despite their success, deep learning-based architectures face challenges 
like overfitting, complexity, reliance on large datasets, and sensitivity to 
hyperparameter choices. Moreover, two major issues persist in neonatal 

seizure detection: (1) CNNs typically require multi-dimensional input, 
while EEG signals are inherently one-dimensional; and (2) severe class 
imbalance, where non-seizure events far outnumber seizure events. To 
overcome these challenges, this proposed approach presents a novel 
CNN- based framework for detection of neonatal seizures. The EEG 
signals were processed and converted into multi-dimensional tensor 
representations using Daubechies (db4) wavelet decomposition. Also, 
data balancing techniques are employed to mitigate class imbalance and 

improve model robustness. These tensors were used to train a CNN model 
and the performance was assessed against standard performance 
evaluation metrics i.e., accuracy, sensitivity and specificity [13]. 

Materials and Methods 

This research utilizes a neonatal EEG dataset comprising multi-channel 

EEG recordings from 79 neonates. These infants were admitted to the 
NICU at Helsinki University Hospital, Finland, between 2010 and 
2014[26]. The EEG recordings were conducted using 19 electrodes [30] 
according to the "International 10–20 system (Fp1, Fp2, F3, F4, F7, F8, 
Fz, C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2)", with 256Hz as 

sampling rate and a one-second resolution, measured in microvolts 
(µV)[30]. Three experts independently annotated the EEG recordings, 
and during this procedure, the signals were in a standard bipolar montage 

('double banana'). Figure 1A shows the electrode arrangement in standard 
bipolar montage. Among the neonates, 40 had seizures confirmed by all 
experts, 17 had experienced seizures as identified by one or two experts, 
and 22 were free of seizures. In total, 1,379 seizures were annotated. 
Annotation details are provided in Table 1A. The dataset is publicly 
accessible at [31]. 
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Figure 1A: Full 18-channel (double banana) montage.[41] 

 EXP3  EXP12  EXP0 

Infant # A B C Infant # A B C Infant # A B C 

1 25 42 36 2 2 - - 3 - - - 

4 2 7 3 6 - - 4 10 - - - 

5 5 5 7 8 1 2 - 18 - - - 

7 6 21 6 12 - - 1 27 - - - 

9 3 8 3 23 4 - 9 28 - - - 

11 3 4 1 24 - 1 - 29 - - - 

13 5 6 6 26 - - 7 30 - - - 

14 45 26 38 33 1 - 6 32 - - - 

15 19 6 20 43 - - 4 35 - - - 

16 30 45 61 46 - - 4 37 - - - 

17 4 3 3 54 8 - 17 42 - - - 

19 9 13 10 56 - - 1 45 - - - 

20 17 19 24 61 - - 3 48 - - - 

21 1 1 1 64 - 25 12 49 - - - 

22 8 6 7 65 - - 4 53 - - - 

25 12 14 4 68 1 2 - 55 - - - 

31 2 2 2 74 - 5 6 57 - - - 

34 1 1 1  Sum EXP12 58 - - - 

36 2 1 2 17 35 78 59 - - - 

38 19 16 24  60 - - - 

39 6 7 6 70 - - - 

40 12 18 8 71 - - - 

41 45 10 58  EXP0 

44 7 10 8 0 0 0 

47 3 5 3  

50 10 10 10 

51 4 1 8 

52 1 2 2 

62 1 1 1 

63 5 12 25 

66 2 2 2 

67 16 16 19 

69 14 9 15 

71 4 4 2 

73 6 4 7 

75 1 1 1 

76 2 3 3 

77 1 3 3 

78 22 22 24  

79 5 8 6 

 EXP3 

385 394 470 

Table 1A: Numbers of seizures annotated by 3 experts (marked as A, B and C) for every infant [13],
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The dataset includes 79 edf files with information of EEG recordings and 
3 annotation files corresponding to each expert [13]. The raw signals were 
in unipolar montage and hence, could not be used directly; instead, a 
standard bipolar montage was created using 18 electrode pairs such as 
“Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F8, 
F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, 

T5-O1, Fz-Cz, Cz-Pz”. In this research, data from 40 neonates, each 
annotated by all three experts, and 17 neonates, annotated by one or two 

experts, were chosen. To ensure consistency, only seizure events agreed 
upon by at least two experts were retained. For example, if two out of 
three experts labeled a time segment as a seizure, it was accepted as such 
in the final dataset. To segment the EEG signals, a sliding window 
approach was used, a common method in seizure detection studies 
[13,32,33]. A window size of 10 seconds with 1-second overlap was 
applied for seizure segments. Non-seizure segments used non- 
overlapping windows. This resulted in 5,294 seizure and 19,858 non-
seizure windows, saved in CSV format. For feature extraction, each EEG 

window was processed using the Discrete Wavelet Transform (DWT) and 
further was decomposed using Daubechies 4 (db4) wavelet [34]. The 
signal was decomposed into four levels, separating it into approximation 
(A) coefficients and detail (D) coefficients. The model uses coefficients 
A4, D4, D3, and D2, which correspond to the delta and theta bands(A4), 

alpha band(D4), beta band(D3) and gamma band(D2) respectively. This 
decomposition helps isolate key frequency components relevant to 
seizure detection, as illustrated in Figure 1B. Each 10-second EEG 
window, sampled at 256 Hz, contains 2,560 samples. Using Daubechies-
4 (db4) wavelet decomposition upto 4 levels [34], the signal is split into 
approximation (A4) and detail coefficients (D2, D3, D4), resulting in 
2,560 coefficients per window (A4: 160, D4: 160, D3: 320, D2: 640, plus 
D1: 1,280). With 18 channels, each window forms an 18 × 2,560 feature 

matrix. The dataset was divided into a 70:30 ratio, with 70% reserved for 
the training set and 30% designated for the testing set. The features were 
reshaped into 3D tensors for CNN input—specifically, the dimension of 
a single tensor was 20 × 2,560 × 18 with corresponding label vectors of 
size 20 × 1. Each tensor contains 10 seizure and 10 non-seizure windows. 
This transformation from 1D to 3D is essential for compatibility with 2D-
CNN model. The tensors formed are visually represented in Figures 1C 
and 1D. Figure 1C represents a single layer of a tensor with dimension 20 
X 2560 where 20(10+10) is number of seizure and non-seizure instances 

and 2560 are number of wavelet coefficients. Figure 1B represents a 
single tensor with 18 layers depth-wise representing 18 channels. 

The architecture of the model, drawing inspiration from Gramacki et al. 
[13], is composed of three blocks 

 

Figure 1B: Wavelet Decomposition using db4 

 
Figure. 1C: A depiction of Tensor layer and label vector
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Figure 1D: The 3D tensor fed to the CNN model. 

Each block includes a Conv2D layer, a batch normalization layer, a ReLU 
activation function, a max pooling layer, and a dropout layer [13]. The 
architecture is represented in Figure 1E. The filter count starts at 128 in 
the first block, decreases to 64 in the second, and further reduces to 32 in 
the third block. The dropout rate is set at 25% for the first two blocks, 
while the final convolutional block has a dropout rate of 50%. Following  

the convolutional layers, there are two dense layers, one with 64 units and 
the other with 32 units, both employing L2 regularization. This is 
succeeded by a dense layer that gives a single unit output. The model 
utilizes binary cross-entropy as its loss function. It operates at 0.001 
learning rate using the Adam optimizer and was trained for 300 epochs 
with batch size of 32. An elaborated summary of the model parameters is 
provided in Table 1B. 

 

Figure 1E: Architecture of proposed model 
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Parameter Value 

Optimization Algorithm Adam Optimizer 

Activation Function Sigmoid 

Loss Function Binary Cross Entropy 

Learning Rate 0.001 

Batch Size 32 

Epochs 300 

Table 1B: Model Parameters 

The most common metrics for assessing model performance include 

accuracy, sensitivity, and specificity [13]. These metrics are based on a 
confusion matrix, which demonstrates the number of correct and incorrect 
predictions for each class. Predictions are typically categorized as “True 
Positive (TP)” (accurately predicts the positive class), “True Negative 
(TN)” (accurately predicts the negative class), “False Positive (FP)” 
(wrongly predicts the negative class), and “False Negative (FN)” 
(wrongly predicts the positive class). The formulas for calculating 
accuracy, sensitivity, and specificity are represented as follows [35]: 

𝑐𝑐𝑢𝑎𝑐𝑦 = 
𝑃 + 𝑁

𝑃 + 𝑁 + 𝑃 + 𝑁
 

𝑒𝑠𝑡𝑣𝑡𝑦 = 
𝑃
𝑃 + 𝑁

 

𝑒𝑐𝑐𝑡𝑦 = 
𝑁
𝑁 + 𝑃

 

Results 

The proposed method was evaluated using the same performance metrics 
described earlier. The extracted features were fed into the model, and after 
training, the output layer produced a vector of size 20×1. In this vector, 

each component had a value between 0 and 1. To improve the model's 

assessment, a threshold of 0.5 was used: elements with values less than or 
equal to 0.5 were assigned a classification of 0, while those with values 
above 0.5 were classified as 1. It is important to highlight that the output 
elements were mostly found within the intervals [0, 0.3] or [0.7, 1]. The 
threshold facilitates a clearer distinction between actual and predicted 
outputs. This step improved the comparability of the results. The accuracy 
and loss values obtained by the proposed model in training, testing and 
validation phases are summarized in Table 2A. The training accuracy 

along with testing accuracy was obtained as 100% whereas, the loss was 
approximately approaching to 0%. The slight ambiguity in the loss values 
can be attributed to the penalty term introduced by the L2 regularizer. 
Figures 2A and 2B depict the confusion matrices for the training phase 
and testing phase, respectively. By calculating the evaluation metrics 
from confusion metrics, the model achieved 100% accuracy and 
sensitivity, with an F1 score of 1. Additionally, Figures 2C and 2D 
illustrate the accuracy curve and loss curve during the training phase. The 
graphs indicate fluctuations in the early epochs; however, the curves 

quickly stabilized, reaching nearly 100%. 

 
Figure. 2A: Confusion Matrix for training Phase. 

 
Figure 2B: Confusion Matrix for testing Phase. 
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Figure 2C: Accuracy Curve for training phase 

 
Figure. 2D: Loss Curve for training phase 

 Accuracy Loss 

Training 1.0 0.0005 

Validation 1.0 0.0005 

Testing 1.0 0.0004 

Table 2A: Accuracy and Loss values in various phases. 

Discussion 

The performance of proposed the CNN-based model is capable of 
accurately distinguishing between seizure and non-seizure occurrences in 
EEG signals by utilizing features derived from wavelet transformations. 
The model achieved perfect classification performance, with 100% 
accuracy, sensitivity, and an F1 score of 1 in training and as well as testing 
phase. This indicates a strong generalization capability, likely aided by 
the distinct separation of output probabilities and the robustness of the 

chosen wavelet features. The use of dropout layers and L2 regularization 
effectively mitigated over-fitting, as evident from the stable loss and 
accuracy curves. 

Numerous other approaches have been devised to detect eplileptic 
seizures. To evaluate the effectiveness of the proposed method, a 
comparison was conducted with several existing deep learning techniques 
using the same dataset. The baseline model by Gramacki et al. [13] 
employed a 10-second sliding window technique to extract features and 

form sub-datasets, which were then fed to CNN, yielding an average 

accuracy of 96–97% across various sub-datasets.Tanveer et al. [26] 
utilized a combination of three 2-D models, achieving an accuracy rate of 
96.3%. Visalini et al. [28] implemented a “triplet half-band filter” along 
with “wavelet packet decomposition” before inputting the data into a 

Deep Belief Network, which resulted in an accuracy of 98.7%. Raeisi et 
al. [29] introduced a “Spatio-Temporal Graph Attention Network (ST-
GAT)” that effectively captures both temporal and spatial characteristics, 
achieving 96.6% accuracy on the Helsinki dataset [31]. Daly et al. [36] 
introduced a deep neural network leveraging longer EEG segments, data 
augmentation, residual connections, and a robust optimizer, achieving 
97.73% accuracy on over 4,570 hours of clinical EEG recordings. The 
results are summarized in Table 3A. While these methods demonstrate 

high accuracy, none achieved perfect classification. In contrast, the 
proposed method reached 100% accuracy, sensitivity, and F1 score, 
highlighting its superior performance on the same dataset. 

Several other studies have also explored time-frequency domain analysis 
for EEG signal classification; however, their reported accuracies were 
often not satisfactory. As shown in Table 3B, Cho et al. [37]. 
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Authors Methods Accuracy 

Gramacki et al. [4] Sliding window design and CNN model 96-97% 

Tanveer et al. [21] Ensemble model using 3 different CNN model 96.3% 

Visalini et al. [23] Deep Belief Network with Triplet Half-Band filter and Wavelet 

Packet Decomposition 

98.7 % 

Raeisi et al. [24] Spatio-Temporal Graph Attention Network (ST-GAT) 96.6 % 

Daly et al. [30] CNN with residual connections and data augmentation 97.73% 

Table 3A: Comparison with existing methods using same dataset 

Authors Methods Accuracy 

Cho et al. [31] Wavelet Transform and SVM 80.54% 

Khan et al. [32] Discrete Wavelet Tranform and CNN model 87.8% 

Sharma et al. [33] Analytic time-frequency flexible wavelet transforms and fractal dimension 

and LS-SVM 

100% 

Thasneem et al. [34] Wavelet based features and linear classifier 99.5% 

Table 3B: Comparison with existing methods using time-frequency analysis. 

Applied wavelet transform followed by Support Vector Machine (SVM) 

classification, resulting in 80.54% accuracy. Thasneem et al. [38] 

improved on this by combining wavelet-based features with a linear 

classifier, reaching 99.5% accuracy. Some studies employed approaches 

particularly wavelet analysis comparable to the proposed method. For 

instance, Khan et al. [39] extracted features using discrete wavelet 

transform and classified the data using a CNN, but achieved a lower 

accuracy of 87.8%. While Sharma et al. [40] reported 100% accuracy, 

their method differed considerably, incorporating machine learning 

models with a flexible wavelet transform and fractal dimension-based 

features. 

The suggested method streamlines the classification process by 

employing a simplified deep learning framework, achieving results that 

are either on par with or better than those obtained through intricate 

preprocessing or manually crafted feature extraction. 

Conclusion 

Several methods have been developed for detecting neonatal seizures 

using EEG data. Before the advent of deep learning, traditional machine 

learning algorithms were widely employed, utilizing features derived 

from various domains for analysis. In this study, wavelet decomposition 

using the Daubechies 4 transform was performed on a 10 second window 

of EEG data. This data was split into a 70:30 ratio where, 70% is used for 

training and 30% is reserved for testing. The proposed method achieved 

100% accuracy and sensitivity, with an F1-score of 1. These results 

underscore the effectiveness of the time-frequency domain as a robust 

solution for precise and reliable classification. The methods overcome the 

common issue of imbalanced dataset in neonatal seizure detection. The 

proposed study effectively outperforms other existing techniques 

including the ones using exactly same dataset and also the methods which 

rely exclusively on time-frequency domain, highlighting its superiority in 

seizure detection. However, the exceptionally high-performance warrants 

further validation on more diverse and larger dataset to ensure reliability 

and real-world applicability. Additionally, while the binary classification 

results are impressive, future work could explore multiclass classification 

or real-time detection frameworks to enhance the model's clinical 

relevance. 
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