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Abstract 

Recent advances in quantum biology and DNA nanotechnology suggest that quantum coherence and phase-aligned 

entanglement may play a fundamental role in stabilizing DNA structures beyond the canonical double helix. This paper 

proposes that phase-aligned entanglement can facilitate the formation and stabilization of DNA triple helices (triplex DNA), 

particularly in the presence of Hoogsteen-bonded third strands involved in gene targeting and regulatory modulation. We 

explore the conditions under which quantum coherence between complementary and third strands allows for a stable triplex 

state, drawing from empirical data on triplex-forming oligonucleotides (TFOs), synthetic enhancer RNAs, and DNA-graphene 

hybrid quantum interfaces. Our model integrates entanglement fidelity, spin coherence, and π–π stacking interactions, offering 

new insights into triplex applications in epigenetic therapy, biosensing, and programmable genome editing. 
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Introduction 

1. Background and Molecular Basis of Triple Helix Formation 

Triplex DNA involves the interaction of a third strand, typically rich in 

purines or pyrimidines, with a Watson–Crick duplex. It binds via Hoogsteen 

base pairing, forming T·AT or C·GC⁺ triads under slightly acidic conditions 

or with synthetic modification [2,4,14]. Applications include gene silencing, 

site-specific recombination, and chromatin remodeling [5,15,16]. Despite its 

promise, triplex DNA is often transient, with poor in vivo persistence. 

Enhancing triplex stability has relied on chemical modification of 

oligonucleotides, incorporation of peptide nucleic acids (PNAs), or tethering 

via nanoparticles [7,17]. 

2. Quantum Coherence and Phase-Aligned Entanglement in DNA 

Systems 

Quantum coherence—the preservation of wavefunction phase across 

spatially or temporally distributed systems—is emerging as a key feature of 

biomolecular processes [8,18]. Phase-aligned entanglement refers to the 

synchronization of quantum states such that interaction energy and 

probability distributions remain coherent, even across separate molecular 

domains [9,19]. Experimental systems involving DNA-graphene hybrids 

have demonstrated entanglement-preserving π–π stacking, electron spin 

transport, and non-classical photonic behavior [11,20,21]. These features 

have already been used to model DNA as a spin network or Bloch-sphere 

logic lattice, offering fault-tolerant logic behavior in quantum computation 

[22–24]. 

3. Proposed Model: Triple Helix Stabilization via Entanglement 

We propose that a triple helix can be stabilized if: 

• The Watson–Crick duplex is entangled with a third strand 

through spin-correlated hydrogen bonds. 

• The π–π orbital stacking across all three strands is enhanced via 

a graphene-based scaffold. 

• The phase correlation between complementary bases (A–T, G–

C) and the third strand base is maintained using synthetic 

enhancer RNA or TFO with quantum entanglement potential. 

Triplex stability is improved when the third strand aligns in phase with the 

duplex, minimizing decoherence through quantum synchronization across 

the molecular lattice [19,24]. 

4. Mechanisms for Engineering Phase-Aligned Entanglement 

• Graphene-DNA interfaces promote spin preservation and π–π 

orbital coherence [20,25]. 
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• DNA polymerases functioning under spin-coherent conditions 

can propagate entangled states during strand synthesis [26]. 

• Triplex-forming oligonucleotides (TFOs) engineered with 

magnetic labels or quantum dots can serve as spin-encoded 

qubits, enabling direct monitoring of entanglement fidelity 

[27,28]. 

• Enhancer RNAs (eRNAs) may act as biological third strands 

with embedded regulatory logic and entanglement alignment 

[13,29]. 

5. Applications and Implications 

Therapeutics: Triplex DNA stabilized by entanglement can be used to 

silence genes epigenetically or block transcription factors [4,15,30]. 

Biosensing: Entangled triplexes integrated into nano-electronic platforms 

allow high-sensitivity detection of genomic states [20,31]. 

Quantum Genomics: The model offers new directions for quantum 

memory encoding in DNA, enabling hybrid biological-computational 

architectures [23,32]. 

Synthetic Biology: Triplex-based control systems could function as logic 

gates, regulated by quantum coherence rather than classical chemical 

equilibrium [24,33]. 

Conclusion 

Phase-aligned entanglement introduces a new quantum-mechanical pathway 

for stabilizing DNA triple helices. This model suggests that third-strand 

binding can be enhanced through spin-aligned π–π interactions, templated 

coherence, and quantum-assisted polymerase extension. By engineering 

triplex-forming DNA to participate in entangled quantum networks, a novel 

class of programmable, biologically relevant, and quantum-stable nucleic 

architectures can be realized. 
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Supplement Material 

 

Inhibition of Triple Helix Formation by Phase-Aligned Entanglement 

Using Colloid Gold 

Background and Hypothesis 

Triple helix DNA structures, formed via Hoogsteen or reverse Hoogsteen 

hydrogen bonding, involve a third strand binding into the major groove of a 

canonical DNA double helix. These interactions are particularly favored in 

homopurine–homopyrimidine sequences and under conditions that stabilize 

unusual base pairing geometries. Recent theoretical models propose that 

phase-aligned entanglement—coherent synchronization of molecular 

conformational states or quantum spin–orbital alignment—may facilitate or 

stabilize the assembly of such triple helices. 

We propose that colloid gold nanoparticles (AuNPs) may interfere with the 

formation or stabilization of phase-aligned triple helix structures. Colloid 

gold is known to interact strongly with nucleic acids due to its high surface 

area, modifiable surface chemistry, and plasmonic properties. We 

hypothesize that these interactions may disrupt the quantum or molecular 

conditions necessary for phase-aligned triple helix assembly. 

Potential Mechanisms of Interference 

1. Steric Hindrance: AuNPs bound to DNA may impose spatial 

constraints that hinder the third strand from inserting into the major 

groove of the duplex. This blockage would directly impair triple 

helix formation irrespective of sequence compatibility. 

2. Surface Charge and Ionic Effects: Gold nanoparticles, depending 

on their surface functional groups (e.g., citrate, PEG, thiols), can 

alter local ionic strength and electrostatic conditions. This alteration 

can destabilize the Hoogsteen hydrogen bonding network by 

repelling the third strand or changing DNA hydration and phosphate 

repulsion dynamics. 

3. Disruption of Quantum Coherence: If phase-aligned 

entanglement involves coherent spin or vibrational states across the 

DNA complex, the introduction of metal nanoparticles—especially 

those with plasmonic resonance—could act as sources of 

decoherence. This interference may arise from electromagnetic 

field fluctuations, electron scattering, or vibrational damping, 

leading to the collapse of entangled conformational states. 

4. Photothermal and Photoelectric Disruption: Upon light 

exposure (especially in the visible or near-infrared range), AuNPs 

can generate localized heating or photoelectrons via surface 

plasmon resonance. Such perturbations may destabilize the triple 

helix or preclude the entanglement phase conditions necessary for 

its formation, particularly in systems where entanglement relies on 

fine-tuned thermodynamic equilibrium. 

Literature Support and Theoretical Basis 

Studies have shown that gold nanoparticles can influence DNA 

conformation, including the denaturation of duplexes and inhibition of G-

quadruplexes. Although direct experimental data regarding AuNP effects on 

triple helix DNA are sparse, the mechanistic parallels with known inhibitory 

effects on other DNA secondary structures suggest a plausible interference 

role. 

Furthermore, gold’s quantum decoherence-inducing capacity is well 

documented in nanoscale systems. If phase-aligned entanglement is a 

prerequisite for stable triple helix DNA—as some quantum biological 

models suggest—then colloid gold could function as an anti-entanglement 

agent, selectively inhibiting the supramolecular ordering required for third-

strand binding. 

Conclusion 

Colloid gold nanoparticles represent a promising candidate for disrupting 

triple helix formation mediated by phase-aligned entanglement. This 

inhibition likely results from a combination of steric, electrostatic, and 

quantum-level effects. Further empirical studies, including spectroscopic 

and entanglement coherence assays, are required to validate this hypothesis 

and define the conditions under which AuNPs exert maximal inhibitory 

effects on DNA tertiary structures.
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