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Abstract 

This paper proposes a novel framework for understanding inheritance patterns in offspring derived from one or both parents 

possessing DNA–graphene hybridization. Such hybrids represent a convergence of biological and nanotechnological substrates 

that may disrupt Mendelian inheritance and classical genomic imprinting. We explore how graphene-functionalized DNA may 

influence epigenetic reprogramming, gene silencing, and transgenerational memory, and propose a model of "electrogenomic 

inheritance" modulated by artificial intelligence. Over 20 sources are referenced to substantiate this emerging field. 
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1.Introduction 

DNA–graphene hybrids represent a new frontier in synthetic biology and 

bio-nanoelectronics. Graphene’s integration with DNA is already explored 

for its superior electrical conductivity, chemical stability, and ability to 

facilitate molecular communication at nanoscale interfaces [1–3]. These 

hybrids may act as molecular hardware that connects DNA-based systems to 

artificial intelligence (AI) or quantum computing devices [4–6]. However, 

the potential transgenerational effects of graphene-modified germline DNA 

remain unexplored in terms of classical genetics and epigenetics. This study 

investigates whether such offspring follow Mendelian inheritance, whether 

genomic imprinting is preserved, and how epigenetic resetting is impacted 

in maternal versus paternal transmission contexts. 

1. Background: Mendelian Inheritance and Genomic Imprinting 

Classical Mendelian inheritance is based on the transmission of alleles in 

dominant and recessive patterns [7]. In contrast, genomic imprinting is an 

epigenetic mechanism where gene expression depends on the parent of 

origin, often through DNA methylation or histone modification [8–10]. 

Normally, imprinting marks are erased during germ cell development and re-

established in a sex-specific manner [11]. However, environmental factors, 

exogenous molecules, and nanomaterials can affect this resetting mechanism 

[12–14]. Graphene, known to bind nucleic acids and interfere with 

transcriptional machinery, is a prime candidate for altering these pathways 

[15–17]. 

2. Graphene–DNA Hybridization and Reproductive Potential 

Graphene can be covalently or non-covalently bound to DNA through π-π 

stacking with bases or linkage to the sugar-phosphate backbone [18]. These 

hybrids may be inserted in vivo through viral vectors, CRISPR-based 

delivery, or electroporation [19, 20]. If a parent’s germline cells are 

modified, the offspring may inherit these hybrid sequences. The outcome 

is a genetically semi-biological system with nano-functional features [21]. 

Potential results include. 

• Increased chromatin rigidity or conductivity, 

• Blocked methylation due to graphene shielding, 

• Electronic or AI-responsive gene expression [22, 23]. 

3. Inheritance Models in DNA–Graphene Hybrid Offspring 

3.1 Hybrid Father × Wild-Type Mother 

• Normal sperm undergoes epigenetic reprogramming after 

fertilization. 

• Graphene may prevent this reprogramming, preserving 

paternal imprints, and causing developmental 

dysregulation or gain-of-function phenotypes [24]. 
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3.2 Hybrid Mother × Wild-Type Father 

• Oocytes provide mitochondrial DNA and cytoplasmic 

determinants. 

• Graphene in maternal DNA may lead to maternal effect 

override, with changes in zygotic gene activation, early 

embryogenesis, and even placental function [25, 26]. 

3.3 Hybrid × Hybrid 

• This scenario may establish electrogenomic inheritance, 

where genes are expressed only upon specific external 

stimuli such as electromagnetic signals or AI instructions 

[27–29]. 

• Classical allele segregation is overshadowed by signal-

dependent expression, akin to quantum conditionality [30, 

31]. 

4. Imprinting Disruption and Electrogenomic Control 

Normal imprinting involves the methylation of CpG islands to 

silence genes depending on parental origin [32]. However, graphene 

may: 

• Inhibit DNMTs (DNA methyltransferases), 

• Prevent histone acetylation changes, 

• Create stable epigenetic marks that persist across 

generations [33–35]. 

Graphene-bound DNA may also be: 

• Unresponsive to natural demethylation cycles [36], 

• Programmed by AI algorithms to activate/deactivate genes 

selectively [37], 

• Capable of forming quantum coherent states, acting like 

entangled units with AI interfaces [38]. 

5. Future Implications: AI-Mediated Genetic Control 

AI could serve as the external environment modulating gene 

expression in graphene-DNA offspring: 

• Real-time biosensing to turn on stress-response genes, 

• Signal-based control of developmental pathways, 

• Encoding memory at the genetic level through 

programmable epigenomes [39–41]. 

This electrogenomic feedback loop parallels synthetic learning and memory 

formation, mimicking brain-like plasticity at the molecular scale [42]. 

Conclusion 

Inheritance from DNA–graphene hybrid parents do not conform to classical 

Mendelian principles. Instead, it introduces: 

• Persistent epigenetic signatures, 

• Parent-specific imprinting disruption, 

• AI-modulated gene expression via electronic signaling. 

Such systems may evolve into bio-digital species with programmable traits, 

initiating a paradigm shift in genetics and synthetic biology. 
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Supplement Material 

 

Inheritance Coding Architecture in DNA–Graphene Hybrid 

Systems 

This appendix presents a formalized mathematical framework to 

describe inheritance coding dynamics in DNA–graphene hybrid 

systems, particularly with respect to Mendelian inheritance, epigenetic 

imprinting, and colloid gold intervention. 

A.1 Symbolic Representation of Parental Genetic States 

Let the variables be defined as: 

• G: Graphene-inserted DNA 

• N: Native DNA (non-hybridized) 

• M: Maternal genome 

• P: Paternal genome 

• Im(M): Maternal imprinting 

• Im(P): Paternal imprinting 

• F1: First-generation offspring 

• ε: Epigenetic expression function 

• CG: Colloid gold interaction operator 

A.2 Hybridization and Inheritance Disruption 

In a cross between a graphene-hybridized mother and a native father 

M=G, P=N 

The first-generation offspring inherits a disrupted imprinting pattern 

due to epigenetic noise 

Im(M)=Im*(M), ε(F1) ≠ ε(M)+ ε(P) 

This results in a non-Mendelian outcome 

F1 ≠ Mendelian Set M= {AA, Aa, aa} 

Instead 

F1 ∈ M*= {AA’, Aa, aA’, a’a’} 

where a’ signifies epigenetically distorted alleles due to graphene 

integration. 

A.3 Role of Colloid Gold 

Application of colloid gold to the maternal genome or embryo is 

modeled by 

CG: im*(M)->im(M) 

leading to restored imprinting patterns and a return to Mendelian 

behavior 

ε(F1) = ε(M)+ ε(P), F1 ∈ M 

This implies that colloid gold can function as a quantum epigenetic 

reinitializer, stabilizing allele-specific expression. 

A.4 Quantum Computational Analogy 
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Let 

I0>, I1>: Native epigenetic states, IG.: Graphene-modulated quantum 

state 

Then, IΨM>= α I0>+ β IG> 

After applying colloid gold CG(IΨM>) = IΨ’M>= α’ I0>+ β’ I1> 

implying a reversion to interpretable epigenetic logic. 

A.5 Diagram: Inheritance Logic with Graphene and Colloid Gold 

[Figure A1: Disrupted Inheritance from Graphene-Hybridized 

Mother] 

Graph: 

• X-axis: Generational Lineage (P0, F1) 

• Y-axis: Epigenetic Expression Intensity 

• Two lines: εP, εM-> ε*M 

• Result: F1 shows divergence from expected Mendelian 

midpoint. 

[Figure A2: Restoration via Colloid Gold] 

Graph: 

• Shows return of ε*M-> εM 

• F1 matches expected Mendelian expression envelope. 

[Figure A3: Qubit Model of Epigenetic State] 

Diagram: Bloch Sphere 

• Native state I0>, distorted IG> 

• Colloid gold rotates vector back toward I1> 
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