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Abstract: 

Background: The search for non-invasive and accessible markers of cardiovascular function has driven the exploration of 

innovative technologies, with photoplethysmography (PPG) emerging as a promising tool. Traditionally used for detecting 

pulse and oxygen saturation, PPG waveforms also contain valuable information about blood circulation. This single-

subject, retrospective signal analysis aimed to investigate the correlation between a set of novel PPG-derived Blood Flow 

Indices (BFIs) and the occurrence of Premature Ventricular Complexes (PVCs).  

Methods:  PPG waveforms and corresponding electrocardiograms (ECG) were extracted from a randomly selected 

individual from the Medical Information Mart for Intensive Care III (MIMIC-III) database. BFIs, including Arterial Blood 

Ratio (ABR), Arterial Blood Proportion (ABP), Exact Pulsatile Ratio (EPR), Waveform Ratio (WFR), and Average Peak 

Slope (APS), were calculated from waveforms. Statistical analyses, including Mann-Whitney U tests and the Hodges-

Lehmann estimate, assessed differences and correlations between BFIs and PVC occurrence.  

Results: The analysis revealed statistically significant differences in the medians of BFIs between the with-PVC and 

without-PVC groups (p < 0.05). Mann-Whitney U tests confirmed a higher APS and lower ABR, WFR, EPR, and ABP in 

the with-PVC group (p < 0.0001). Harrell's C-index values (0.77–0.87) indicated a strong discriminatory ability of BFIs to 

detect PVCs.  

Conclusion: These findings suggest that BFIs derived from PPG can reliably differentiate between PVC and non-PVC 

events, supporting their potential as non-invasive markers.  
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Introduction 

In cardiovascular health assessment, the Electrocardiogram (ECG) is an 

indispensable tool, providing clinicians with invaluable insights into the 

electrical activity of the heart. Among the various signals recorded by 

ECG, Premature Ventricular Complexes (PVCs) are commonly observed 

but are often considered benign in many cases.[1] However, research 

suggests that certain patterns of PVC occurrence may be associated with 

broader cardiovascular events, including atrial fibrillation, heart failure, 

and increased cardiovascular risk in specific populations [1–4]. While 

PVCs themselves may not always be clinically significant, their detection 

serves as a valuable comparison point for evaluating novel physiological 

markers. 

Recent advancements in cardiovascular monitoring have introduced 

innovative tools that extend beyond the limitations of conventional ECG 

methods[5–7] This study explores the potential of a health monitoring 

system based on blood flow indices to provide cardiovascular insights by 

analyzing signals obtained from photoplethysmography (PPG). PPG is a 

well-established optical technique that non-invasively captures 

microvascular blood volume changes at the skin surface.[8, 9] It is widely 

used in medical devices to measure oxygen saturation and pulse rate and 

is also being explored for applications in blood pressure and respiratory 

rate monitoring. [10–12] However, its full potential in comprehensive 

cardiovascular assessment, such as detecting hemodynamic alterations 

and cardiac irregularities, remains underexplored.  
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The PPG waveform has two main components. The first component is a 

pulsatile physiological signal associated with cardiac-related blood 

volume changes synchronized with each heartbeat.[13] The second 

component is a slowly varying baseline with lower-frequency elements 

related to respiration, sympathetic nervous system activity, and 

thermoregulation.[14]Together, these components provide rich 

physiological information that can be leveraged for various health 

monitoring applications. In recent years, there has been a notable 

resurgence of interest in PPG technology, driven by the increasing 

demand for accessible and portable healthcare solutions in primary care 

and community-based clinical settings. [15] 

In this study, we investigate whether indices derived from PPG 

waveforms correlate with PVCs detected by ECG. By comparing PPG-

derived indices with ECG, which is a critical tool for PVC diagnosis, we 

aim to assess their potential role in identifying cardiovascular events. 

These findings could contribute to expanding the clinical applications of 

PPG beyond its traditional uses, making it a valuable tool in modern 

healthcare. 

Materials and Methods 

We used data from the Matched Subset database within the 

Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC III) 

dataset.[16] This database is matched with deidentified demographic data 

in the MIMIC III Clinical database. The study was conducted in 

accordance with Good Clinical Practice (Declaration of Helsinki, 2002), 

and all necessary ethical approvals were obtained per the guidelines and 

requirements of the MIMIC-III database. The MIMIC-III project was 

approved by the Massachusetts Institute of Technology (MIT) and Beth 

Israel Deaconess Medical Center (BIDMC), and as the data is 

deidentified, informed consent was not required. 

The Matched Subset database waveforms include Electrocardiogram 

(ECG) [17, 18], respiration, continuous blood pressure, and 

Photoplethysmography (PPG) signals, all sampled at 125 Hz. A fingertip 

sensor measured the PPG data. The dataset used in this study was obtained 

from a randomly selected subject who had synchronized PPG and ECG 

waveform data. The primary exposure was defined as the presence of a 

Premature Ventricular Contraction (PVC) event identified on the ECG 

waveform. We reviewed the 8-minute ECG trace and annotated all PVC 

occurrences. For each PVC event, we extracted a corresponding 6-second 

segment of the PPG waveform, beginning 2.4 seconds prior to the PVC 

peak. These waveform segments constituted the group associated with 

PVC events. The remaining PPG waveform data (excluding the PVC-

associated segments) were partitioned into 6-second segments to form the 

comparison group, representing non-PVC intervals. Each PPG segment 

was then analyzed to extract relevant waveform features. The PPG 

waveform includes two primary components, a pulsatile and a non-

pulsative component [19]. As shown in Figure 1, the pulsatile 

component, recognized as the alternating current (AC) component [20], 

is in synchrony with the cardiac cycle[12].  

 
Figure 1: Representative photoplethysmography (PPG) waveform showing the respective pulsatile (AC) and non-pulsatile (DC) components. The AC 

component reflects the dynamic changes in arterial blood volume during the cardiac cycle, while the DC component includes absorption by skin, 

muscle, bone, venous blood, and the static portion of arterial blood. Light intensity changes over time are illustrated to demonstrate the relationship 

between the physiological signals and the PPG waveform. 
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In this study, the PPG waveform, along with its maximum and minimum 

values within each segment and each cardiac cycle, was used to establish 

specific areas for analysis (Figure 2). We calculated the Blood Flow 

Indices (BFIs) by dividing the respective areas within the waveform or 

using the periodic slope of the PPG waveform. The statistical analyses 

were conducted using STATA statistical software, release 17 (College 

Station, TX: StataCorp LLC, TX, USA).[21]  

 

Figure 2: Visualization of photoplethysmography (PPG) waveform areas based on the maximum and minimum values identified within each segment 

and cardiac cycle. The upper boundary is defined by the highest peak of the pulsatile signal, while the lower boundary is determined by the lowest 

trough. These points are used to delineate individual waveform segments. 

Due to the non-normal distribution of our data, nonparametric statistics 

were employed for analysis. Blood flow indices (BFIs) were assessed 

using the Mann-Whitney U test, with results presented as medians and 

interquartile ranges. The Hodges–Lehmann median difference test [22] 

was employed to compare the median differences between individual 

PPG segments in the groups with- and without-PVC. To measure the 

ability of blood flow indices to predict the presence of PVCs, we 

calculated Newson’s Harrell's C-index.[23, 24] Statistical significance 

was determined with a threshold of p-value <0.05. 

Results 

The waveform dataset of PPG and corresponding ECG was obtained from 

the MIMIC III matched subset database belonging to a 78-year-old male 

subject. The dataset consisted of 77 PPG waveform segments. These were 

divided into two groups based on the presence of PVCs in the 

corresponding ECG segment. The resulting groups included 18 segments 

with PVCs and 59 segments without PVCs in their corresponding ECG 

waveforms. The mean number of PPG peaks in data segments was 8.32 

(SD: 0.77). In this study, we incorporated a set of PPG indices that 

comprehensively analyze the pulsatile component of the PPG waveform. 

These indices include the Arterial Blood Ratio (ABR), Arterial Blood 

Proportion (ABP), Exact Pulsatile Ratio (EPR), Waveform Ratio (WFR), 

and Average Peak Slope (APS). The arterial blood ratio (ABR) was 

computed by dividing the arterial blood area by its complement within the 

pulsatile area. Similarly, the arterial blood proportion (ABP) was 

determined by dividing the arterial blood segment by the sum of the 

arterial blood area and its complement. The waveform ratio (WFR) was 

calculated to address low-frequency fluctuations[14] in the PPG 

waveform. The calculation defined the lower limit as the baseline, 

determined by the lowest minimum of the waveform, and the upper limit 

as the tip of the highest peak. The WFR was then computed as the ratio 

of the area under the waveform to the area above the waveform. The Exact 

Pulsatile Ratio (EPR) was determined by dividing the pulsatile area, with 

the exclusion of the impact of low-frequency variations, by the 

complement area positioned between the waveform and the lower and 

upper limits established by the low-frequency fluctuations. The Average 

Peak Slope (APS), the average absolute value of the periodical slope of 

the PPG waveform, completes this set of indices, collectively offering a 

nuanced and multi-faceted perspective on the diverse aspects of the 

pulsatile component within the PPG signal.  

The median APS for the entire group was 0.082 (IQR 0.063 - 0.109). The 

group containing the PPG segments with PVCs in the corresponding ECG 

waveform (n=18) had a median of 0.122 (IQR 0.100- 0.144), and the 

median APS for the group of PPG segments without PVCs was 0.075 

(IQR 0.060- 0.088) (Figure 3). The entire group's PPG-derived indices 

presented median values as follows: Arterial Blood Ratio (ABR) 0.47 

(0.43-0.49), Waveform Ratio (WFR) 0.56 (0.52-0.62), Exact Pulsatile 

Ratio (EPR) 2.42 (1.89-2.86), and Arterial Blood Proportion (ABP) 0.32 

(0.30-0.33). 
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Figure 3: Average Peak Slope (APS) as a representative Blood Flow Index (BFI) in each study group. Although all BFIs were calculated, only the 

APS is shown in this figure. Comparisons between groups were performed to assess variations in BFI, potentially reflecting differences in vascular 

function or circulatory status. 

The Mann-Whitney U test revealed a statistically significant difference in 

Average Peak Slope (APS) between the group with PVCs and the group 

without PVCs (z = -4.45, p< 0.0001). Notably, the group with PVCs 

exhibited a higher APS compared to the group without PVCs. We found 

significant differences between the two groups in other PPG-derived 

indices as well. The group with PVCs displayed lower values in Arterial 

Blood Ratio (ABR) (z = 4.65, p< 0.0001), Waveform Ratio (WFR) (z = 

4.35, p< 0.0001), Exact Pulsatile Ratio (EPR) (z = 3.41, p= 0.0006), and  

Arterial Blood Proportion (ABP) (z = 4.65, p< 0.0001), compared to the 

group without PVCs.   

The Hodges–Lehmann median difference test [22] revealed a statistically 

significant difference in the medians of Blood Flow Indices (BFIs) 

between the without-PVC and with-PVC groups. These results confirm 

the distinct variation in hemodynamic patterns between the two groups, 

as shown in. [Figure 4] The 95% confidence intervals for the median 

differences, which do not cross zero, further support this finding. The 

detailed results are presented in the supporting document. 

 

Figure 4: Box plots showing the distribution of Blood Flow Indices (BFIs) in participants with premature ventricular contractions (PVCs, dashed 

boxes) and without PVCs (white boxes). The comparison illustrates potential hemodynamic differences between the two groups 



Clinical Case Reports and Reviews.                                                                                                                                                               Copy rights@ Mahnaz Derakhshan, 

Auctores Publishing LLC – Volume 26(3)-841 www.auctoresonline.org  
ISSN: 2690-4861                                                                                                                              Page 5 of 7 

We calculated Harrell’s C-index using Newson’s method to assess the 

ability of blood flow indices to predict the presence of PVCs [25]. The 

results show that, based on a random selection, the probability of an 

observed average peak slope (APC) in the with-PVC group exceeding that  

of the without-PVC group is 85% (Table 1). The probabilities and 

corresponding confidence intervals for observing lower values of ABR, 

WFR, EPR, or ABP in the with-PVC group compared to the without-PVC 

group are also presented in Table 1. The measured C-index values ranged 

from 0.77 to 0.87. 

 

Indices Harrell's C-index [95% Conf. Interval] p-Value* 

ABRa 0.87   0.74    0.99 p< 0.001 

WFRb 0.84 0.70    0.98 p< 0.001 

EPRc 0.77 0.64    0.90 p< 0.001 

ABPd 0.87 0.74    0.99 p< 0.001 

APSe 0.85 0.74   0.96 p< 0.001 

Table 1: Prediction Ability of Blood Flow Indices: Harrell's C-Index. 

a: Arterial blood ratio; b: Waveform ratio; c: Exact pulsatile ratio; d: Arterial blood proportion; e: Average peak slope; *: calculated by Newson 

Somers' D package. 

Discussion 

The findings of our study highlight distinct photoplethysmography (PPG) 

characteristics between the two groups. The observed differences in the 

Blood Flow Index (BFI) reflect potential variations in their underlying 

hemodynamic profiles. Specifically, the higher APS observed in the with-

PVC group points to increased variability in the blood flow waveform, 

indicative of altered circulatory dynamics associated with PVCs. 

While PVCs are typically considered electrical disturbances on the 

electrocardiogram (ECG), they may also exert mechanical effects on 

cardiac function. Beyond irregular electrical impulses, PVCs can disrupt 

the coordinated contraction and relaxation of the heart chambers, leading 

to reduced mechanical efficiency. These mechanical changes are 

detectable in the PPG waveform, emphasizing the potential of PPG to 

capture not only electrical but also mechanical abnormalities in 

cardiovascular function. 

Our statistical analyses—including the Mann-Whitney U test and the 

Hodges–Lehmann median difference test—revealed non-overlapping 

confidence intervals between the groups, supporting a significant 

difference in the medians of the blood flow indices. Alongside C-index 

values ranging from 0.77 to 0.87, well above the random ordering 

threshold of 0.5, these findings suggest that BFIs have strong 

discriminatory power for identifying PVC presence. This supports their 

potential role as effective markers in cardiovascular assessments. 

Additionally, the Hodges–Lehmann estimates clarify the typical shift in 

PPG segment values associated with PVCs. Specifically, it estimates the 

expected change in PPG segments when a PVC is present in the 

corresponding electrocardiogram. The statistically significant 

differences, across all indices, indicate that these metrics can reliably 

signal the occurrence of PVCs and reinforce the diagnostic potential of 

BFIs. This finding suggests that the BFIs could play an essential role in 

monitoring cardiovascular health. Their future integration into routine 

health monitoring systems may enhance diagnostic and prognostic 

assessments, particularly for individuals at risk of arrhythmias or other 

cardiac issues. 

A key strength of this study is that the data were collected from a single 

individual within a defined time frame, minimizing potential confounding 

factors such as variations in disease state, medication effects, or inter-

individual differences. This controlled setting ensures that observed 

associations between PPG-derived indices and ECG-detected PVCs are 

not influenced by external physiological variables. However, this also 

presents a limitation, as the findings may not be directly generalizable to 

a broader population with diverse cardiovascular conditions and varying 

physiological characteristics. Future studies involving larger sample sizes 

and multiple individuals across different clinical backgrounds are 

necessary to further validate these results, account for inter-individual 

variability, and better assess diagnostic and prognostic capabilities. 

Conclusions 

Our study highlights the potential of the PPG indices, such as BFIs, to 

detect significant physiological changes in cardiovascular function, 

particularly regarding PVC occurrence. The strong correlation between 

BFIs and PVCs suggests that these indices could serve as valuable non-

invasive tools for cardiac health monitoring. However, further research 

with larger sample sizes is needed to fully validate their diagnostic and 

prognostic capabilities. Expanding studies will help refine their clinical 

applications, enhancing their use in both routine and specialized care 

settings. The versatility of PPG as a non-invasive modality for assessing 

cardiovascular health continues to inspire exploration in research and 

clinical practice. These findings underscore the promise of new 

approaches for cardiovascular assessment, with potential implications for 

improving patient outcomes through personalized monitoring strategies. 

Acknowledgement 

The authors declare that no financial support or specific funding was 

received to conduct this research. There are no personal financial interests 

or professional relationships that could be perceived as influencing the 

work. The authors are inventors of monitoring apparatuses, systems, and 

methods using arteriovascular pulse signals. 

Supplementary                                                                                                                                                                                                       

An additional file containing a supplementary table and figure has been 

provided alongside the manuscript. Relevant data is available in the 

associated GitHub repository. 

References 

1. Stevenson WG, Zeppenfeld K (2022). Ventricular 

Arrhythmias. Braunwald’s Heart Disease: A Textbook of 

Cardiovascular Medicine, :1288–1311.  

2. Orini M, Duijvenboden S Van, Young WJ, Ramírez J, Jones 

AR, Tinker A, Munroe PB, Lambiase PD (2023) .Premature 

atrial and ventricular contractions detected on wearable-format 

electrocardiograms and prediction of cardiovascular events. 

European Heart Journal - Digital Health, 4(2):112–118.  

https://academic.oup.com/ajhp/article-abstract/80/17/1123/7180924
https://academic.oup.com/ajhp/article-abstract/80/17/1123/7180924
https://academic.oup.com/ajhp/article-abstract/80/17/1123/7180924
https://academic.oup.com/ehjdh/article-abstract/4/2/112/7025061
https://academic.oup.com/ehjdh/article-abstract/4/2/112/7025061
https://academic.oup.com/ehjdh/article-abstract/4/2/112/7025061
https://academic.oup.com/ehjdh/article-abstract/4/2/112/7025061
https://academic.oup.com/ehjdh/article-abstract/4/2/112/7025061


Clinical Case Reports and Reviews.                                                                                                                                                               Copy rights@ Mahnaz Derakhshan, 

Auctores Publishing LLC – Volume 26(3)-841 www.auctoresonline.org  
ISSN: 2690-4861                                                                                                                              Page 6 of 7 

3. Marcus GM (2020). Evaluation and Management of Premature 

Ventricular Complexes. Circulation, 141(17):1404–1418.  

4. Suba S, Pelter MM (2019).Clinical significance of premature 

ventricular contraction among adult patients: Protocol for a 

scoping review. Systematic Reviews, 8(1) -4 

5. Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, Li R, 

Khine M, Kim J, Wang J, Kim J (2018). Wearable sensors: 

modalities, challenges, and prospects. Lab on a Chip, 

18(2):217–248.  

6. Tang L, Yang J, Wang Y, Deng R (2023).Recent Advances in 

Cardiovascular Disease Biosensors and Monitoring 

Technologies. ACS Sensors, 8(3):956–973.  

7. Min S, Kim DH, Joe DJ, Kim BW, Jung YH, Lee JH, Lee BY, 

Doh I, An J, et al (2023) ,Clinical Validation of a Wearable 

Piezoelectric Blood-Pressure Sensor for Continuous Health 

Monitoring. Advanced materials (Deerfield Beach, Fla.), 

35(26) 

8. Lindberg LG, Tamura T, Öberg PÅ (1991), 

Photoplethysmography - Part 1 Comparison with laser Doppler 

flowmetry. Medical & Biological Engineering & Computing, 

29(1):40–47.  

9. Mejía-Mejía E, Allen J, Budidha K, El-Hajj C, Kyriacou PA, 

Charlton PH (2021) ,Photoplethysmography signal processing 

and synthesis. Photoplethysmography: Technology, Signal 

Analysis and Applications, :69–146.  

10. Nilsson L, Johansson A, Kalman S (2005) ,Respiration can be 

monitored by photoplethysmography with high sensitivity and 

specificity regardless of anaesthesia and ventilatory mode. Acta 

anaesthesiologica Scandinavica, 49(8):1157–1162.  

11. Johansson A (2003), Neural network for 

photoplethysmographic respiratory rate monitoring. Medical & 

biological engineering & computing, 41(3):242–248.  

12. Allen J (2007) ,Photoplethysmography and its application in 

clinical physiological measurement. Physiological 

Measurement, 28(3):R1–R39.  

13. Lindberg LG, Öberg PÅ (1991), Photoplethysmography. Part 

2. Influence of light source wavelength. Medical & biological 

engineering & computing, 29(1):48–54.  

14. Nitzan M, Babchenko A, Khanokh B (1999), Very low 

frequency variability in arterial blood pressure and blood 

volume pulse. Medical & biological engineering & computing, 

37(1):54–58.  

15. Turakhia MP (2024),Wearable Devices in Cardiovascular 

Medicine . Braunwald’s Heart Disease: A Textbook of 

Cardiovascular Medicine, :117–122.  

16. Johnson AEW, Pollard TJ, Shen L, Lehman LWH, Feng M, 

Ghassemi M, Moody B, Szolovits P, Anthony Celi L, Mark RG 

(2016),MIMIC-III, a freely accessible critical care database. 

Scientific Data 2016 3:1, 3(1):1–9. 

17. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov 

PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE 

(2000), PhysioBank, PhysioToolkit, and PhysioNet: 

components of a new research resource for complex 

physiologic signals. Circulation, 101(23) 

18. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, 

Horng S, et al (2023), MIMIC-IV, a freely accessible electronic 

health record dataset. Scientific Data, 10(1) 

19. Nitzan M, Babchenko A, Milston A, Turivnenko S, Khanokh 

B, Mahler Y (1996) ,Measurement of the variability of the skin 

blood volume using dynamic spectroscopy. Applied Surface 

Science, 106:478–482.  

20. Lee C, Sik Shin H, Lee M (2011), Relations between ac-dc 

components and optical path length in photoplethysmography. 

Journal of biomedical optics, 16(7):077012.  

21. Hodges JL, Lehmann EL (1963), Estimates of Location Based 

on Rank Tests. The Annals of Mathematical Statistics, 

34(2):598–611.  

22. Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA (1982), 

Evaluating the Yield of Medical Tests. JAMA: The Journal of 

the American Medical Association, 247(18):2543–2546.  

23. Newson R (2020),SOMERSD: Stata module to calculate 

Kendall’s tau-a, Somers’ D and median differences. Statistical 

Software Components,  

24. Newson R (2002), Parameters behind “nonparametric” 

statistics: Kendall’s tau, Somers’ D and median differences. 

The Stata Journal, 2(1):45–64. 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.119.042434
https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.119.042434
https://link.springer.com/article/10.1186/s13643-019-1168-4
https://link.springer.com/article/10.1186/s13643-019-1168-4
https://link.springer.com/article/10.1186/s13643-019-1168-4
https://pubs.rsc.org/en/content/articlehtml/2018/lc/c7lc00914c
https://pubs.rsc.org/en/content/articlehtml/2018/lc/c7lc00914c
https://pubs.rsc.org/en/content/articlehtml/2018/lc/c7lc00914c
https://pubs.rsc.org/en/content/articlehtml/2018/lc/c7lc00914c
https://pubs.acs.org/doi/abs/10.1021/acssensors.2c02311
https://pubs.acs.org/doi/abs/10.1021/acssensors.2c02311
https://pubs.acs.org/doi/abs/10.1021/acssensors.2c02311
https://pubs.acs.org/doi/abs/10.1021/acssensors.2c02311
https://pubs.acs.org/doi/abs/10.1021/acssensors.2c02311
https://pubs.acs.org/doi/abs/10.1021/acssensors.2c02311
https://pubs.acs.org/doi/abs/10.1021/acssensors.2c02311
https://pubs.acs.org/doi/abs/10.1021/acssensors.2c02311
https://link.springer.com/article/10.1007/BF02446294
https://link.springer.com/article/10.1007/BF02446294
https://link.springer.com/article/10.1007/BF02446294
https://link.springer.com/article/10.1007/BF02446294
https://www.sciencedirect.com/science/article/pii/B9780128233740000153
https://www.sciencedirect.com/science/article/pii/B9780128233740000153
https://www.sciencedirect.com/science/article/pii/B9780128233740000153
https://www.sciencedirect.com/science/article/pii/B9780128233740000153
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-6576.2005.00721.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-6576.2005.00721.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-6576.2005.00721.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-6576.2005.00721.x
https://link.springer.com/article/10.1007/BF02348427
https://link.springer.com/article/10.1007/BF02348427
https://link.springer.com/article/10.1007/BF02348427
https://iopscience.iop.org/article/10.1088/0967-3334/28/3/R01/meta
https://iopscience.iop.org/article/10.1088/0967-3334/28/3/R01/meta
https://iopscience.iop.org/article/10.1088/0967-3334/28/3/R01/meta
https://link.springer.com/article/10.1007/BF02446295
https://link.springer.com/article/10.1007/BF02446295
https://link.springer.com/article/10.1007/BF02446295
https://link.springer.com/article/10.1007/BF02513266
https://link.springer.com/article/10.1007/BF02513266
https://link.springer.com/article/10.1007/BF02513266
https://link.springer.com/article/10.1007/BF02513266
https://cardio.jmir.org/2023/1/e44003
https://cardio.jmir.org/2023/1/e44003
https://cardio.jmir.org/2023/1/e44003
https://www.nature.com/articles/sdata201635/npapers3:/publication/doi/10.1038/sdata.2016.35
https://www.nature.com/articles/sdata201635/npapers3:/publication/doi/10.1038/sdata.2016.35
https://www.nature.com/articles/sdata201635/npapers3:/publication/doi/10.1038/sdata.2016.35
https://www.nature.com/articles/sdata201635/npapers3:/publication/doi/10.1038/sdata.2016.35
https://www.ahajournals.org/doi/abs/10.1161/01.cir.101.23.e215
https://www.ahajournals.org/doi/abs/10.1161/01.cir.101.23.e215
https://www.ahajournals.org/doi/abs/10.1161/01.cir.101.23.e215
https://www.ahajournals.org/doi/abs/10.1161/01.cir.101.23.e215
https://www.ahajournals.org/doi/abs/10.1161/01.cir.101.23.e215
https://www.nature.com/articles/s41597-022-01899-x
https://www.nature.com/articles/s41597-022-01899-x
https://www.nature.com/articles/s41597-022-01899-x
https://www.sciencedirect.com/science/article/pii/S016943329600387X
https://www.sciencedirect.com/science/article/pii/S016943329600387X
https://www.sciencedirect.com/science/article/pii/S016943329600387X
https://www.sciencedirect.com/science/article/pii/S016943329600387X
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-16/issue-7/077012/Relations-between-ac-dc-components-and-optical-path-length-in/10.1117/1.3600769.short
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-16/issue-7/077012/Relations-between-ac-dc-components-and-optical-path-length-in/10.1117/1.3600769.short
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-16/issue-7/077012/Relations-between-ac-dc-components-and-optical-path-length-in/10.1117/1.3600769.short
https://link.springer.com/chapter/10.1007/978-1-4614-1412-4_25
https://link.springer.com/chapter/10.1007/978-1-4614-1412-4_25
https://link.springer.com/chapter/10.1007/978-1-4614-1412-4_25
https://jamanetwork.com/journals/jama/article-abstract/372568
https://jamanetwork.com/journals/jama/article-abstract/372568
https://jamanetwork.com/journals/jama/article-abstract/372568
https://econpapers.repec.org/software/bocbocode/s336401.htm
https://econpapers.repec.org/software/bocbocode/s336401.htm
https://econpapers.repec.org/software/bocbocode/s336401.htm
https://journals.sagepub.com/doi/abs/10.1177/1536867X0200200103
https://journals.sagepub.com/doi/abs/10.1177/1536867X0200200103
https://journals.sagepub.com/doi/abs/10.1177/1536867X0200200103


Clinical Case Reports and Reviews.                                                                                                                                                               Copy rights@ Mahnaz Derakhshan, 

Auctores Publishing LLC – Volume 26(3)-841 www.auctoresonline.org  
ISSN: 2690-4861                                                                                                                              Page 7 of 7 

 

 

 

 

 

 

 

 

 

 

 

 This work is licensed under Creative    
   Commons Attribution 4.0 License 
 

 

To Submit Your Article Click Here: Submit Manuscript 

 

DOI:10.31579/2690-4861/841

 

 

 

Ready to submit your research? Choose Auctores and benefit from:  
 

➢ fast, convenient online submission 

➢ rigorous peer review by experienced research in your field  

➢ rapid publication on acceptance  

➢ authors retain copyrights 

➢ unique DOI for all articles 

➢ immediate, unrestricted online access 
 

At Auctores, research is always in progress. 

 

Learn more  https://auctoresonline.org/journals/international-journal-of-

clinical-case-reports-and-reviews  

file:///C:/C/Users/web/AppData/Local/Adobe/InDesign/Version%2010.0/en_US/Caches/InDesign%20ClipboardScrap1.pdf
https://auctoresonline.org/submit-manuscript?e=66
https://auctoresonline.org/journals/international-journal-of-clinical-case-reports-and-reviews
https://auctoresonline.org/journals/international-journal-of-clinical-case-reports-and-reviews

