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Abstract 

The emergence of drug-resistant and novel diseases underscores the urgency for innovative therapeutic 

interventions. Drug repositioning and computational approaches offer an efficient pathway to accelerate drug 

discovery and development. This study leverages these techniques in designing and evaluating derivatives based on 

the FDA-approved compound, pyridine-4-carbohydrazide, to assess how structural modifications impact 

therapeutic potential. 

Methods: The derivatives were designed using a chemical library of small molecules containing imine functional 

groups, built upon pyridine-4-carbohydrazide scaffolds (INH01-INH19). Computational tools, including 

Molinspiration Cheminformatics, way2drug, and the pkCSM platform, were utilized to evaluate each derivative's 

physicochemical properties, drug-likeness, bioactivity scores, potential biological activities, and ADME 

(Absorption, Distribution, Metabolism, Excretion) profiles. 

Results: Most derivatives demonstrated enhanced physicochemical characteristics, adhering to both Lipinski’s Rule 

of Five and Veber’s Rule. Bioactivity scores varied with moderate to inactive interactions across six target classes, 

ranked as follows: enzyme inhibitors, kinase inhibitors, G-protein-coupled receptors, protease inhibitors, nuclear 

receptors, and ion channel modulators. Notably, derivatives INH03, INH09, INH14, and INH19 exhibited high 

predicted activity in multiple therapeutic areas, indicating potential applications in antibacterial, antiviral, 

antiprotozoal, anti-inflammatory and anticancer treatments. Moreover, structural modifications in these derivatives 

positively influenced ADME profiles compared to pyridine-4-carbohydrazide, though certain compounds presented 

challenges, such as limited solubility, P-glycoprotein interactions and CYP450 inhibition.  

Conclusions: These Schiff base derivatives stand out as promising candidates for further drug development, 

underscoring the importance of computational strategies in optimizing drug discovery and design. 

Keywords: drug discovery; drug repositioning; in-silico study; adme properties 

Introduction 

A drug, in the context of medicine, is a chemical or biological substance 

designed to interact with biological processes within an organism to treat, 

diagnose, or prevent disease (Benedetti, 2014). These agents can originate 

from diverse sources, including natural, semisynthetic, or synthetic 

origins(Pollock et al., 2024). The continuous need for new medications 

arises from several factors, including the toxicity and side effects of 

existing drugs(Kroschinsky et al., 2017), the emergence of new 

diseases(Khan et al., 2020), the development of drug resistance(Jackson 

et al., 2018), and advancements in our understanding of health 

conditions(Subbiah, 2023). These challenges actuate pharmaceutical 

research and development to innovate, improve treatment efficacy and 

address previously unmet medical needs. The traditional process of drug 

discovery follows a well-established procedure, beginning with the 

identification and validation of molecular targets(Salazar & Gormley, 
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2017). This is typically followed by high-throughput screening of 

extensive chemical libraries to identify potential lead compounds(Sinha 

&Vohora, 2017). Conventional drug discovery methods heavily rely on 

empirical approaches, involving extensive in vitro and in vivo testing to 

evaluate a compound's efficacy, pharmacokinetics and toxicity. Although 

this approach has led to the development of numerous successful 

therapies, it is both time-consuming and costly, often requiring over a 

decade and more than $2.5 billion to successfully bring a new drug to 

market(Kumari et al., 2022; Schlander et al., 2021). To overcome these 

challenges, alternative approaches such as drug repurposing, also known 

as drug repositioning, have gained prominence(Ahmad et al., 2021; 

Talevi& Bellera, 2020a). Drug repositioning involves identifying new 

therapeutic uses for existing drugs, whether FDA-approved, withdrawn, 

or outdated. This approach leverages the well-established safety profiles 

of known drugs, allowing for faster and less costly drug 

development(Gazerani, 2019). Drug repositioning can also involve using 

an existing drug as a template for synthesizing new analogs that exhibit 

activity against other diseases(Cha et al., 2018). This strategy has distinct 

advantages over conventional drug discovery, including shorter 

development timelines, reduced investment needs, and higher success 

rates(Pushpakom et al., 2018; Wu et al., 2019). Approximately 33% of 

drugs approved in recent years have resulted from drug repositioning 

efforts, underscoring its effectiveness as a modern drug discovery 

strategy(Talevi& Bellera, 2020b). 

Advances in computational technologies, bioinformatics, and proteomics 

have significantly accelerated the drug discovery process through the 

integration of in-silico methods(Liao et al., 2022). Computational 

approaches, commonly known as computer-aided drug design (CADD), 

have become indispensable tools at every stage of drug 

development(Kapetanovic, 2008). CADD enables the transformation of 

biological target information into computational models, allowing for 

data computation, analysis, and the prediction of compound activities. 

Molecular docking, virtual screening, and machine learning help filter 

large chemical libraries into smaller, more promising subsets for 

experimental validation. Moreover, CADD offers critical insights for lead 

compound optimization, focusing on improving binding affinity, 

pharmacokinetics, and toxicity profiles, as well as designing novel 

compounds via structural modifications(Sliwoski et al., 2014). The 

benefits of CADD are vast, providing substantial reductions in the time, 

cost, and experimental scope traditionally required for drug discovery. By 

predicting and optimizing compound properties in silico, CADD can 

shorten the research timeline and reduce development costs by up to 

50%(Sachin S Padole et al., 2022; Xiang et al., 2012). Additionally, as 

computational accuracy continues to improve, these predictions 

increasingly align with experimental outcomes, bolstering the credibility 

and reliability of in silico approaches. Today, CADD is widely employed 

in the search for treatments for a range of diseases, including cancer(Chua 

et al., 2023; Reddy et al., 2007), Diabetes(Balamurugan et al., 2012; 

Semighini et al., 2011), and infectious diseases caused by viruses (Chen 

et al., 1994; Doyon et al., 2005; Yang et al., 2024)and bacteria(Duan et 

al., 2019; Njogu et al., 2016; Supuran, 2017). 

Pyridine-4-carbohydrazide, commonly known as isoniazid, has served as 

a cornerstone in the treatment of tuberculosis. Its efficacy stems from its 

ability to inhibit the synthesis of mycolic acids, essential components of 

the mycobacterial cell wall(Vilchèze&Jacobs, 2019). The chemical 

structure of isoniazid, as depicted in Figure 1, presents a versatile 

molecular framework for the development of agents with a broad 

spectrum of biological activities.One of the common approaches 

isreplacing the hydrazide hydrogen with different functional groups can 

alter the molecule's polarity, hydrophobicity, hydrogen bonding capacity, 

and overall molecular conformation(Mali et al., 2021; Raczuk et al., 

2022). This versatility has led to the synthesis of a plethora of derivatives 

with expanded therapeutic applications such as anti-inflammatory(Zhang 

et al., 2020), antitubercular(Aboui-Fadl et al., 2003), anticancer(Firmino 

et al., 2016; Rodrigues et al., 2014), antimicrobial and urease inhibitory 

activity(Habala et al., 2016), antidepressant and analgesic 

properties(Uddin et al., 2020), in the treatment of Alzheimer’s 

disease(Santos et al., 2020). Additionally, the pyridine moiety itself plays 

a crucial role in enhancing drug permeability, biochemical potency, and 

metabolic stability. Moreover, the pyridine ring's ability to form various 

non-covalent interactions with protein targets facilitates drug-target 

binding(Ling et al., 2021; Pennington & Moustakas, 2017). The FDA 

database provides compelling evidence of the prevalence of pyridine-

based drugs. Approximately 18% of approved heterocyclic drugs 

incorporate pyridine or its derivatives, highlighting its significance as a 

structural motif in medicinal chemistry(Ling et al., 2021). 
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Figure 1: Chemicalstructure of Pyridine-4-Carbohydrazide (Isoniazid, 

INH). 

Based on these advancements, this study aims to design and evaluate a 

chemical library of small molecules incorporating imine functional 

groups and pyridine-4-carbohydrazide scaffolds. Leveraging 

computational methods, we will predict the physicochemical properties, 

drug-likeness, bioactivity profiles, and ADME characteristics of these 

derivatives before synthesis and screening. By doing so, we aim to reduce 

resource waste and avoid unnecessary time and expenses associated with 

screening compounds that have a low likelihood of activity. This 

proactive approach is intended to streamline the identification of 

promising agents, enhancing the efficiency of the drug discovery pipeline 

and reducing the risk of failure in later stages. 

Materials and Methods 

Design Strategy 

In this study, compounds (Schiff bases) were designed by utilizing the 

FDA-approved drug pyridine-4-carbohydrazide(A) and hybridized with 

substituted aldehydes (B). The imine group (C), formed during this 

process, was used to augment the lipophilic behavior part, as illustrated 

in Scheme 1. The R groups vary in type, position, partition coefficient, 

and hydrogen bonding capacity. This modification was intended to 

investigate the influence of various substituents on the phenyl ring and 

their impact on the biological activity of these compounds. A total of 

nineteen compounds were designed and assigned the code INH01-

INH19. 
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Scheme 1: The Design Concept for Schiff Base Compounds 

(probably use large letter C in the figure!) 

In silicoStudy 

This study was conducted using a HP computer system with the following 

specifications: Windows 11 operating system, Intel® Core™ i5-1135G7 

Quad-core Processor @ 2.40GHz, and 8 Gigabytes of RAM. The 

chemical structures of nineteen compounds (INH01-INH19) were 

initially generated using the ChemDrawsoftware suite as in Table 1A. The 

in-silico workflow commenced with the preparation of molecular 

structures for the designed compounds. These structures were first 

constructed in the two-dimensional (2D) format using Chem3D Ultra 

software and saved in the Structure Data File (SDF) format. The 2D 

molecular representations were then converted into SMILES (Simplified 

Molecular Input Line Entry System) format using the online SMILES 

Translator tool provided by the National Cancer Institute 

(https://cactus.nci.nih.gov/translate/). To ensure structural accuracy, the 

resulting SMILES strings were meticulously validated against their 

original chemical structures, as detailed in Table 1B. Following 

validation, the SMILES data served as the key input for subsequent 

predictive analysis. The data was uploaded to various online platforms, 

enabling the calculation of essential molecular properties and the 

prediction of potential biological activities for the designed compounds. 

This computational workflow provided valuable insights into the 

physicochemical, drug-likeness, bioactivity, and pharmacokinetic 

characteristics of the pyridine-4-carbohydrazide derivatives under 

investigation. The specific online platforms employed and the details of 

the obtained predictions are elaborated upon in subsequent sections. 

Physicochemical, Drug-likeness, and bioactivity Properties 

predictions 

The physicochemical properties, drug-likeness, and bioactivity of the 

compounds were evaluated using the molinspirationchemoinformatics 

platform. Drug-likeness assessments were conducted according to 

Lipinski's Rule of Five and Veber's rules. Additionally, the platform 

predicted bioactivity against six different protein targets: GPCR, ICM, 

KI, NRC, PI, and EI. 

Prediction of Activity Spectra for Substances (PASS) 

To further elucidate the biological activity spectrum of the pyridine-4-

carbohydrazide derivatives, the PASS online tool 

(https://www.way2drug.com/passonline/) was employed. 

ADME Prediction 

The ADME properties of the derivatives were predicted using the 

pkCSM-Pharmacokinetics software 

(https://biosig.lab.uq.edu.au/pkcsm/). Established methodologies 

documented in the scientific literature served as the foundation for these 

predictions.
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Table 1A: Codes and chemical Structures of the designed compounds. 

 

Codes Character  

INH01 
IUPAC name N'-[phenylmethylidene] pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1ccccc1)c2ccncc2 

INH02 
IUPAC name N-(2-hydroxybenzylidene) pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1ccccc1O)c2ccncc2 

INH03 
IUPAC name N'-[(3-nitrophenyl) methylidene] pyridine-4-carbohydrazide 

SMILES C1=CC(=CC(=C1)[N+](=O)[O-])C=NNC(=O)C2=CC=NC=C2 

INH04 
IUPAC name N`-[(Z)-(4-Chlorophenyl) methylidene] pyridine-4-carbohydrazide 

SMILES ClC1=CC=C(\C=N\NC(=O)C2=CC=NC=C2)C=C1 

INH05 
IUPAC name N-[(4-Hydroxy-3-methoxybenzylidene) pyridine-4-carbohydrazide 

SMILES COC1=C(C=CC(=C1)C=NNC(=O)C2=CC=NC=C2)O 

INH06 
IUPAC name (N'-(3-ethoxy-4-hydroxybenzylidene) pyridine-4-carbohydrazide 

SMILES CCOc2cc(C=NNC(=O)c1ccncc1)ccc2O 

INH07 
IUPAC name N-(4-(dimethylamino) benzylidene) pyridine-4-carbohydrazide 

SMILES CN(C)C1=CC=C(C=C1)C=NNC(=O)C2=CC=NC=C2 

INH08 
IUPAC name (E)-N'-(4-methoxybenzylidene) pyridine-4-carbohydrazide 

SMILES COc2ccc(C=NNC(=O)c1ccncc1)cc2 

INH09 
IUPAC name (E)-N'-((2-hydroxynaphthalen-1-yl) methylene) pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1c(O)ccc2ccccc12)c3ccncc3 

INH10 
IUPAC name N'-(2-methoxy-4-nitrobenzylidene) pyridine-4-carbohydrazide 

SMILES COc1cc(N(=O)=O)ccc1C=NNC(=O)c2ccncc2 

INH11 IUPAC name N'-(2-hydroxy-5-methoxybenzylidene) pyridine-4-carbohydrazide 
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SMILES COc2ccc(O)c(C=NNC(=O)c1ccncc1)c2 

INH12 
IUPAC name N'-(4-nitrobenzylidene) pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1ccc(N(=O)=O)cc1)c2ccncc2 

INH13 
IUPAC name N'-(furan-2-ylmethylene)pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1ccco1)c2ccncc2 

INH14 
IUPAC name N'-((4-(dimethylamino) naphthalen-1-yl) methylene) pyridine-4-carbohydrazide 

SMILES CN(C)c2ccc(C=NNC(=O)c1ccncc1)c3ccccc23 

INH15 
IUPAC name N-(4-methylbenzylidene) pyridine-4-carbohydrazide 

SMILES CC1=CC=C(C=C1)C=NNC(=O)C2=CC=NC=C2 

INH16 
IUPAC name N'-[thiophen-2-yl] pyridine-4-carbohydrazide 

SMILES C1=CSC(=C1)/C=N\NC(=O)C2=CC=NC=C2 

INH17 
IUPAC name N'-[(2-nitrophenyl) methylidene] pyridine-4-carbohydrazide 

SMILES C1=CC=C(C(=C1)/C=N/NC(=O)C2=CC=NC=C2)[N+](=O)[O-] 

INH18 
IUPAC name N-[(E)-[(Z)-3-phenylprop-2-enylidene]amino] pyridine-4-carbohydrazide 

SMILES C1=CC=C(C=C1)/C=C\C=N\NC(=O)C2=CC=NC=C2 

INH19 
IUPAC name N'-[(E)-(naphthalen-2-yl) methylidene] pyridine-4-carbohydrazide 

SMILES O=C(NN=Cc1cccc2ccccc12)c3ccncc3 

INH 
IUPAC name Pyridine-4-carbohydrazide 

SMILES C1=CN=CC=C1C(=O)NN 

 

Table 1B: IUPAC names and canonical SMILES of the predicted compounds. 

 

Parameter Predictor  Unit Requirement value 

Physiochemical and drug-likeness properties  

 L
ip

in
sk

i'
s 

R
u

le
 

 

Molecular weight (MW) g/mol <500 

Partition coefficient (LogP) - < 5 

Number of hydrogen bond acceptors  - <10 

Number of hydrogen bond donors  - < 5 

V
eb

er
 

R
u

le
 

Number of rotatable bonds (N-rotb) - < 5 

Topological polar surface area 

(TPSA) 
- <140 

Bioactivity score properties  

B
io

a
ct

iv
it

y
sc

o
re

 

G-protein-coupledreceptor ligands 

(GPCR) 
- 

▪ Compounds with a bioactivity 

score greater than 0.00 are 

considered active. 

 

▪ Compounds with a bioactivity 

score ranging from -0.50 to 0.00 

are moderately active. 

 

▪ Compounds with a bioactivity 

score less than -0.50 are deemed 

inactive. 

Ion channel modulation (ICM) - 

Kinase inhibitor (KI) - 

Nuclear receptor ligands (NRL) - 

Protease inhibitor (PI) - 

Enzyme inhibitor (EI) - 

Pharmacokinetic properties  

A
b

so
rp

ti
o

n
 

Water solubility LogS - 

Intestinal absorption (HIA) % Absorbed 

▪ High absorption: %Abs > 30% 

▪ Poorly absorption: %Abs < 

30% 

Caco-2 permeability (Caco-2) 
log Papp in 10–6 

cm/s 
High permeability > 0.90 
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Parameter Predictor  Unit Requirement value 

Skin permeability (SP) log Kp Logkp> -2.5 

P-glycoprotein substrate (P-gp) Yes / No  - 

P-glycoprotein I inhibitor Yes / No - 

P-glycoprotein II inhibitor Yes / No - 
D

is
tr

ib
u

ti
o

n
 

The volume of distribution (VDss) log L/kg 
Low: VDss< -0.15 and high: 

VDss> 0.45 

Fraction unbound (FU) - High > 0.45 

BBB permeability (BBB) log BB 

▪ LogBB Value < -1: poorly.  

▪ LogBB Value > 0.3: crosses the 

BBB. 

CNS permeability log PS 

▪ Log PS Value < -3: unable to 

penetrate. 

▪ Log PS Value > -2: penetrates 

CNS. 

M
et

a
b

o
li

sm
 

CYP1A2 inhibitor Yes / No - 

CYP3A4 substrate/inhibitor Yes / No - 

CYP2C8 inhibitor Yes / No - 

CYP2C9 substrate/inhibitor Yes / No - 

CYP2C19 inhibitor Yes / No - 

CYP2D6 substrate/inhibitor Yes / No - 

E
x

cr
et

io
n

 Total clearance (CLtot) log mL/min/kg Higher is better 

Renal OCT2 substrate Yes / No - 

Table 1C: Distribution of predictors used in the in-Silico Study. 

Results and discussion  

Design strategy 

This study presents an approach to the repositioning of isoniazid by 

introducing structural modifications at the terminal at the terminal NH2 

group. The strategy involves hybridizing isoniazid with various aromatic 

or heteroaromatic aldehydes,leading to the formation of a new functional 

group known as an imine. The selection of aromatic aldehydes as 

hybridization partners was motivated by their structural features. 

Compared to chains, aromatic aldehydes exhibit fewer degrees of 

freedom, which can contribute to enhanced ligand-receptor binding 

energy by reducing the entropic penalty. This property can potentially 

lead to increased compound potency(Mushtaque & Rizvi, 2023; Rohilla 

et al., 2024). 

 

The designed compounds possess several key features: 

1) Nucleophilic imine and reactive nitrogen: The imine group and the 

nitrogen in the pyridine ring offer nucleophilic sites for potential 

interactions with biological targets. 

2) Electrophilic and nucleophilic character of the imine carbon: The 

imine carbon's dual reactivity can facilitate interactions with both 

electron-rich and electron-deficient groups. 

3) Tautomerism potential: A carbonyl group adjacent to the -NH- 

group in hydrazine allows for the possibility of tautomerism in 

certain cases. 

4) Intramolecular and intermolecular interactions: The relative 

positioning of the NH group to the -C=N group can influence the 

propensity for intramolecular and intermolecular interactions, 

potentially enhancing binding to biological targets. 

5) Smaller molecular weight: The reduced molecular weight of these 

derivatives compared to isoniazid may facilitate intracellular 

penetration, mimic endogenous substrates, and increase the 

likelihood of interactions with various targets. 

 

The structural modifications introduced in these compounds are expected 

to significantly influence their physicochemical properties, including 

lipophilicity, electronic characteristics, and steric effects. These 

alterations may, in turn, lead to changes in biological activity and 

therapeutic potential. Ultimately, the goal of these modifications is to 

improve the compounds' efficacy, particularly for applications as DNA-

binding agents. 

Physiochemical and drug-likeness properties predictions 

Prediction of the physicochemical properties of drugcandidates is 

essential for efficient drug development and understanding their 

biological and medicinal actions(Leeson & Young, 2015; Meanwell, 

2011).  Properties such as molecular weight, the number of rotatable 

bonds, and the number of heavy atoms are integral to evaluating drug-

likeness, helping identify oral drug candidates in the early phases of drug 

discovery(Lee et al., 2022a; Tripathi &Ayyannan, 2018).Drug-like 

compounds are molecules that contain functional groups and/or have 

physical properties consistent with the majority of known drugs, 

suggesting that these compounds could potentially exhibit biological 

activity or therapeutic effects. The drug-like characteristics serve as a 

parameter in choosing a more promising compound as a lead from the 

extensive combinatorial libraries(Lee et al., 2022b; Tian et al., 2015). 

One of the foundational methods for assessing drug-like properties is 

Lipinski’s Rule of Five (Ro5), developed by Pfizer's medicinal chemist, 

Christopher Lipinski. The RO5 was derived from an analysis of orally 

available drugs and clinical candidates, though it excludes certain classes 
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such as antibiotics, antifungals, vitamins, and cardiac glycosides. The 

RO5 states that a compound is more likely to be membrane permeable 

and easily absorbed via passive diffusion in human intestine if it meets 

the following criteria: molecular weight (MW) <500, The number of 

hydrogen bond donors (HBDs) <5 (counting the sum of all NH and OH 

groups), partition coefficient octanol/water Log P < 5, The number of 

hydrogen bond acceptors (HBAs) <10 (counting all N and O atoms). The 

thresholds in the rule are multiples of five, hence the name "Rule of 

Five"(Lipinski, 2004; Lipinski et al., 2001).Veber et al. (2002) expanded 

upon the Ro5 by identifying two additional descriptors crucial for optimal 

oral bioavailability in rats: the number of rotatable bonds (NBR) < 10 and 

polar surface area (PSA) < 140 Å²(Veber et al., 2002). According to the 

literature, if a compound violates two or more of the Ro5 properties, it is 

likely to be classified as non-drug-like or suitable for non-oral delivery 

routes(Lipinski et al., 2001; Sampat et al., 2022). Lipinski’s Rule aids in 

filtering out compounds that are less likely to be of interest in ongoing 

research(Roman et al., 2023). 

 

Molinspiration web-based software plays a pivotal role in evaluating 

physicochemical properties and drug-likeness. This tool leverages 

advanced Bayesian statistical methods, integrating the structural and 

property data of both active and inactive compounds to identify 

substructural features characteristic of biologically active molecules. The 

software calculates key physicochemical parameters crucial for predicting 

the theoretical oral bioavailability of the compounds under investigation. 

These parameters include molecular weight, partition coefficient (logP), 

the number of hydrogen bond acceptors and donors, the number of 

rotatable bonds, and total polar surface area, as outlined in Table 4A. 

Number of heavy atoms (N atoms): 

The number of heavy atoms in a molecule is a key factor in drug design, 

influencing molecular size, complexity, drug-likeness, and 

pharmacokinetic properties(García-Sosa et al., 2012). While larger 

molecules offer increased binding potential, they may also pose 

challenges related to synthesis, solubility, and membrane permeability. 

During lead optimization, reducing the number of heavy atoms can lower 

molecular weight and improve solubility, enhancing the drug-likeness 

profile without significantly affecting potency(de Souza Neto et al., 2020; 

Wang et al., 2019). Isoniazid derivatives contain between 16 and 24 heavy 

atoms, with INH having the lowest count at 10 atoms. The increase in 

heavy atoms in derivatives is often due to the substitution of larger 

aromatic rings or additional functional groups, such as in INH14, which 

has the highest count due to the inclusion of a naphthalene ring and a 

dimethylamino group. 

Molecular weight (MW): 

Molecular weightis the sum of the atomic weights of all atoms in a 

molecule, typically expressed in Daltons (Da) or grams per mole (g/mol). 

MW is a critical determinant of a drug’s absorption, distribution, 

metabolism, and excretion (ADME) profile(Komura et al., 2023). As MW 

increases, drug permeability and absorption generally decrease, 

particularly concerning membrane permeability and penetration through 

the blood-brain barrier (BBB)(Pardridge, 2012). Additionally, drug 

clearance through artificial membranes inversely correlates with 

MW(Lienx& Wang, 1980). The MW values of the designed compounds 

range from 215.21 to 318.38 Da, all of which are under the 500 Da 

threshold, suggesting that these molecules are likely to be easily absorbed 

and exhibit good permeability across cell membranes. 

Partition coefficient (LogP): 

The partition coefficient is a key measure of lipophilicity or 

hydrophobicity, calculated as the logarithm of the concentration ratio of 

a compound between organic (usually n-octanol) and aqueous 

phases(Ruiz-Garcia et al., 2008). Positive values of the partition 

coefficient suggest a tendency towards a lipophilic or hydrophobic 

environment,whereas negative values indicate a preference for a 

lipophobic or hydrophilic environment(Khanna & Ranganathan, 2009). 

LogP values significantly impact various ADMET parameters, drug-

receptor interactions, and the overall potency of molecules(Tshepelevitsh 

et al., 2020). Compounds exhibiting extremely high or low LogP values 

may encounter challenges related to permeability and solubility(Waring, 

2010). Highly hydrophilic compounds generally struggle to diffuse 

passively through cellular membranes due to their inability to penetrate 

the hydrophobic core of the lipid bilayer. Conversely, excessively 

lipophilic compounds may also face difficulties in membrane permeation, 

as they tend to become sequestered within the bilayer, impeding their 

effective transit(Lagorce et al., 2017).Researchers have also identified a 

correlation between a compound's logP value and its ability to penetrate 

the blood-brain barrier (BBB), a crucial factor for central nervous system 

(CNS) activity. For CNS-active drugs, a logP value in the range of 4 to 5 

is generally considered optimal(Abraham et al., 1993; Feher et al., 2000). 

The LogP values for the designed compounds (INH01–INH19) were 

within the acceptable range per Lipinski’s Rule and showed superior 

lipophilicity compared to the precursor compound, isoniazid (INH), 

which had a negative LogP value. This enhancement in lipophilicity, 

likely attributed to the presence of the Imine group and aromatic portion 

of the aldehyde, suggests enhanced absorption through biological 

membranes. 

Hydrogen bond acceptor and hydrogen bond donor groups: 

Hydrogen bonds play a crucial role in molecular recognition(Morozov 

&Kortemme, 2005; Santos-Martins & Forli, 2020), structural 

stability(Pace et al., 2011), enzyme catalysis(Calixto et al., 2019; Neves 

et al., 2017), and drug partition and permeability(Rezai et al., 2006; 

Shinoda, 2016). The presence of functional groups capable of forming 

hydrogen bonds can enhance a drug's solubility and its ability to interact 

with biomolecular targets, thereby influencing binding affinity and 

selectivity. However, an excess of hydrogen bond donors or acceptors can 

negatively impact membrane permeability and partitioning(Alex et al., 

2011). In that regard, drug-like character predictors, such as Lipinski's 

rule of five (Ro5) have been using the number of hydrogen bond 

donors/acceptors as a molecular descriptor.In the designed compounds, 

the number of HBAs ranges from 4 to 8, and the number of HBDs ranges 

from 1 to 2, all within the limits set by the Ro5, ensuring that the hydrogen 

bonding potential does not compromise the compounds' drug-like 

properties. 

The number of rotatable bonds (N rotb):  

The number of rotatable bonds is a measure of molecular flexibility and 

is an important descriptor for predicting oral bioavailability.  A rotatable 

bond is defined as any single bond not part of a ring and bound to a non-

terminal heavy atom(Veber et al., 2002). A higher number of rotatable 

bonds increases molecular flexibility, potentially improving binding 

affinity with target proteins. However, compounds with fewer rotatable 

bonds are generally more rigid, which can enhance oral bioavailability by 

reducing the entropy cost of binding(Vieth et al., 2004). In the designed 

compounds, the number of rotatable bonds does not exceed 10, which is 

favorable for maintaining good oral bioavailability. 

Topological polar surface area (TPSA):   

Topological polar surface area is a key descriptor related to hydrogen 

bonding and is important for drug transport properties such as intestinal 

absorption, BBB penetration, and oral bioavailability(Leeson, 2016; 

Veber et al., 2002). TPSA is calculated as the sum of the surface areas of 

polar atoms, primarily oxygen, and nitrogen, including attached 

hydrogens(Ertl et al., 2000). Therefore, TPSA is a reliable indicator of a 

compound's hydrogen bonding capacity. Compounds with a TPSA below 

140 Å² typically exhibit good permeability and oral absorption, while 

those with a TPSA below 80 Å² are more likely to permeate the CNS by 

passive diffusion(Clark, 2011). The TPSA values for the isoniazid 

derivatives range from 54.59 to 109.14 Å², well below the 140 Å² 

threshold, suggesting favorable absorption characteristics. 

 

Molecular volume (Å3): 

Molecular volume, a fundamental property of a molecule, plays a pivotal 

role in drug discovery. Its significance extends to optimizing drug 

candidates, understanding interactions with biological targets, and 

predicting pharmacokinetic properties(Flatow et al., 2014). By 
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determining the molecular volume of a compound, researchers can gain 

insights into its binding affinity, solubility, permeability, and overall 

drug-likeness(La-Scalea et al., 2005; Mcgowan, 1956). In the context of 

isoniazid derivatives, molecular volume variations offer valuable 

information. The range of molecular volumes observed in these 

derivatives, from 187.51 Å³ to 295.84 Å³, highlights the influence of 

structural modifications on the overall molecular size and shape. This 

understanding can inform the design of novel derivatives with 

improved properties. 

Bioactivity predictions 

In drug discovery, predicting the bioactivity of compounds against 

specific biological targets is crucial for understanding their potential 

therapeutic effects and toxicity profiles. Biological targets, which 

commonly include proteins,whether cytosolic, or membrane-

embedded,and nucleic acids, play a key role in mediating the biological 

activity of drugs(Decherchi& Cavalli, 2020). To assess the likelihood of 

compounds interacting with these targets, bioactivity scores can be 

calculated using tools like Molinspiration, an open-source 

chemoinformatics platform. These scores provide valuable insights into 

compounds' binding affinity and selectivity, facilitating the development 

of new drugs with enhanced efficacy and reduced side effects.Bioactivity 

scores are categorized as follows: compounds with scores greater than 0.0 

are likely to exhibit significant biological activity, scores between -0.50 

and 0.00 suggest moderate activity, and scores below -0.50 indicate 

inactivity(Khan et al., 2017). Table 4B suggests the compounds exhibit 

moderate to inactive interactions with six protein targets. The efficiency 

of bioactivity scores typically follows the order of Enzyme Inhibitors 

(EI), Kinase Inhibitors (KI), G-protein-coupled receptors (GPCR), 

Protease Inhibitors (PI), Nuclear Receptors (NRC), and Ion Channel 

Modulators (ICM). The bioactivity profiles of isoniazid derivatives 

(INH01 to INH19) vary significantly depending on the structural 

modifications made to the pyridine-4-carbohydrazide core. For instance, 

the parent compound, isoniazid, shows relatively low bioactivity scores 

across all six targets, particularly in the categories of Nuclear Receptors 

(NRC: -2.33) and Ion Channel Modulators (ICM: -1.45). This suggests a 

low predicted affinity for these targets, consistent with isoniazid's primary 

role as an antibiotic rather than a modulator of these pathways. 

Derivatives such as INH01 (Phenylmethylidene) exhibit moderate 

activity across all targets, indicating that simple phenyl substitution does 

not dramatically alter activity compared to the parent compound. In 

contrast, derivatives like INH13 (Furan-2-yl) and INH16 (Thiophen-2-

yl), which feature heterocyclic aromatic rings, display the lowest activity 

scores, implying that these substitutions may lead to reduced bioactivity. 

The presence of sulfur in the thiophene ring of INH16 could contribute to 

an electron-rich environment that is less favorable for target interactions. 

Compounds with strong electron-withdrawing groups, such as INH03 (3-

Nitrophenyl) and INH17 (2-Nitrophenyl), show decreased bioactivity 

across all targets, particularly for ICM and NRC. This suggests that the 

electron-withdrawing nature of the nitro group reduces binding affinity. 

Conversely, electron-donating groups like methoxy and hydroxy in 

derivatives such as INH05 (4-Hydroxy-3-methoxyphenyl) and INH11 (2-

Hydroxy-5-methoxyphenyl) slightly improve bioactivity, possibly by 

enhancing electronic interactions with certain targets. Derivatives with 

dimethylamino groups, such as INH07 (4-Dimethylaminobenzylidene) 

and INH14 (4-(Dimethylamino)naphthalen-1-yl), show moderate 

activity, indicating that electron-donating groups can enhance bioactivity, 

though the overall effect also depends on the position and presence of 

additional substituents. Meanwhile, bulky naphthalene-containing 

derivatives like INH09 (2-Hydroxynaphthalen-1-yl) and INH19 

(Naphthalen-2-yl) generally exhibit low bioactivity, likely due to 

increased steric hindrance that reduces effective target binding. Lastly, 

INH18 ((Z)-3-phenylprop-2-enylidene) shows moderate bioactivity, 

suggesting that some flexibility in molecular structure can slightly 

improve target binding, though not significantly. 

PASS prediction 

The Prediction of Activity Spectra for Substances (PASS) platform 

provides a robust computational approach for forecasting the biological 

activity spectra of chemical compounds. Developed by the V. N. 

Orechovich Institute of Biomedical Chemistry, PASS predicts 

pharmacological effects based on structural similarities to known 

biologically active compounds. This model relies on a vast dataset, 

primarily derived from the MDL Drug Data Report (MDDR), and 

continuously updated to reflect discoveries in medicinal 

chemistry(Parasuraman, 2011). 

 

The interpretation of PASS predictions requires a degree of flexibility, 

particularly concerning the values of Pa. A Pa value greater than 0.7 

indicates a strong probability that the predicted biological activity can be 

experimentally confirmed. This suggests that the compound shares 

significant structural similarities with known pharmacologically active 

agents, making it a promising candidate for experimental validation. For 

Pa values between 0.5 and 0.7, the probability of experimental 

confirmation is lower. However, such compounds may exhibit novel 

structural features that are not closely aligned with known drugs. These 

novel features could offer valuable insights into unique or less common 

mechanisms of action. In contrast, a P value below 0.5 suggests a 

relatively low probability of experimental validation. Nonetheless, 

compounds with low Pa values may still exhibit structural novelty, 

presenting opportunities for discovery in previously unexplored areas of 

biological activity(Filimonov et al., 2014). Table 5 presents the PASS 

predictions for a series of pyridine-4-carbohydrazide derivatives 

(INH01–INH19), focusing on the most promising activities where Pa > 

0.7. These predictions aim to understand the potential therapeutic 

applications of these compounds, with isoniazid (INH) serving as the 

template compound.Based on the data, each compound has multiple 

potential activities, we can classify the activities into several categories: 

Core Activities: These activities appear consistently across multiple INH 

compounds and likely represent the primary mechanisms of action: 

antituberculosis, antimycobacterial, taurine dehydrogenase inhibitor, and 

amine dehydrogenase inhibitor. 

 

Secondary Activities: These are activities that appear in multiple INH 

compounds but with less frequency or probability than the core activities. 

HMGCS2 expression enhancer (cholesterol metabolism), 

phosphatidylserine decarboxylase inhibitor (cell signaling), glutamine-

phenylpyruvate transaminase inhibitor (amino acid metabolism), antiviral 

(picornavirus and poxvirus), beta-adrenergic receptor kinase inhibitor 

(hormonal signaling). 

Tertiary Activities: These are less common and often have lower 

probabilities. Threonine aldolase inhibitor, isopenicillin-N epimerase 

inhibitor, nicotinamidase inhibitor, PFA-M1 aminopeptidase inhibitor, 

MCL-1 antagonist,nicotinic alpha6beta3beta4alpha5 receptor antagonist,  

corticosteroid side-chain-isomerase inhibitor,  phenylalanine(histidine) 

transaminase inhibitor,  CYP2A8 substrate,  gluconate 2-dehydrogenase 

(acceptor) inhibitor,  cytoprotectant,  transcription factor stat3 inhibitor, 

arylalkyl acylamidase inhibitor, aldehyde dehydrogenase 

(pyrroloquinoline-quinone) inhibitor, thiol protease inhibitor, 

neuropeptide y2 antagonist, aspartate-phenylpyruvate transaminase 

inhibitor, phthalate 4,5-dioxygenase inhibitor,  

glycosylphosphatidylinositol phospholipase D inhibitor. Additionally, the 

analysis of predicted activities across the INH derivatives reveals some 

interesting structure-activity relationships (SARs). Antibacterial activity, 

a primary focus due to INH’s established efficacy against Mycobacterium 

tuberculosis and Gram-positive bacteria, showed that many derivatives 

had comparable or even superior potency to INH. Structural 

modifications appear to enhance antibacterial potency, especially with 

para-substitution on the phenyl ring, which was particularly effective for 

antimycobacterial activity. Derivatives such as INH04, INH07, INH08, 

INH12, and INH15 exhibited higher activity with para-substituted phenyl 

groups. Electron-donating groups (e.g., -OCH3, -N(CH3)2) further 

improved activity, as seen in INH07, INH08, and INH14, while electron-
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withdrawing groups (e.g., -NO2, -Cl) also boosted potency, as observed 

in INH03 and INH12. Compounds containing furan (INH13) or thiophene 

(INH16) substituents showed strong antibacterial activity, particularly 

against tuberculosis. In contrast, ortho- or meta-substitution (INH02, 

INH05, INH06, INH11) tended to reduce activity compared to para-

substituted compounds. Naphthyl substitutions at the 1- or 2-position 

(INH09, INH14, INH19) did not significantly enhance activity over 

phenyl derivatives, and the lack of activity in INH14 suggests that bulkier 

groups may interfere with key binding interactions. Regarding antiviral 

activity, isoniazid itself demonstrated no potential across viral targets. 

However, many derivatives exhibited enhanced antiviral properties, 

underscoring the importance of structural modifications. Derivatives such 

as INH01, INH03, INH04, INH07, INH08, INH10, INH12, INH15, 

INH17, and INH19 displayed notable antiviral activity, with INH01, 

INH07, INH08, INH12, and INH15 showing efficacy against 

Picornavirus (PV) and Poxvirus (POV). Similar to the antibacterial SARs, 

para-substitution on the phenyl ring was again favored for antiviral 

activity. Electron-donating groups (e.g., -OCH3, -N(CH3)2) boosted 

activity in compounds like INH07, INH08, and INH14, while electron-

withdrawing groups (e.g., -NO2, -Cl) enhanced activity in INH03 and 

INH12. Furan (INH13) and thiophene (INH16) substituents showed little 

antiviral activity, while ortho- or meta-substituted phenyl groups (INH02, 

INH05, INH06, INH11) performed less effectively. Naphthyl substituents 

(INH09, INH14, INH19) were not advantageous compared to phenyl 

groups. INH04, INH07, INH08, INH12, and INH15 emerge as promising 

candidates for further investigation, warranting in vitro and in vivo studies 

to confirm their antiviral efficacy and safety. In contrast, INH 

demonstrated no predicted activity as an enhancer of HMGCS2 

expression, a key enzyme in lipid metabolism. However, many 

derivatives showed increased activity in this area, indicating that 

structural modifications improved the HMGCS2 expression-enhancing 

properties. Para-substitution on the phenyl ring was again advantageous 

for enhancing HMGCS2 expression. Compounds such as INH04, INH07, 

INH08, INH12, and INH15 showed heightened activity, with electron-

donating groups (e.g., -OCH3, -N(CH3)2) further enhancing efficacy, as 

in INH07, INH08, and INH14. Electron-withdrawing groups (e.g., -NO2, 

-Cl) also proved beneficial, as seen in INH03 and INH12. INH13, 

containing a furan substituent, exhibited the highest activity for HMGCS2 

expression enhancement, underscoring the importance of this group. As 

with antibacterial and antiviral activities, ortho- and meta-substitutions 

(INH02, INH05, INH06, INH11) resulted in reduced activity, while 

naphthyl substituents (INH09, INH14, INH19) did not significantly 

improve activity over phenyl groups. Derivatives INH02, INH10, INH12, 

and INH13 are particularly promising for further exploration in metabolic 

or transcriptional pathways regulated by HMGCS2. 

ADME prediction 

As opposed to pharmacodynamics, which describes what the drug does 

to the body. Pharmacokinetics (PK) describes what the body does to the 

drug(Currie, 2018a). There are four major determinants of PK, 

commonly called ADME properties(absorption, distribution, 

metabolism, and excretion). These properties are crucial for determining 

the drug's efficacy and safety(Lucas et al., 2019). 

 

The ADME process can be broadly summarized as (i) drug dissolution 

in the gastrointestinal tract, followed by absorption through the gut wall 

and passage into the bloodstream via the liver; (ii) distribution of the drug 

to various tissues, depending on its structural and physicochemical 

properties; (iii) metabolism, where the drug is biochemically modified 

into metabolites, often by enzymatic systems, and (iv) elimination of the 

drug, usually through excretion (Gleeson et al., 2011; van de 

Waterbeemd& Gifford, 2003). For a compound to be effective it must 

reach its target in the body at sufficient concentrations and remain in a 

bioactive form long enough to exert its intended biological effects. Thus, 

understanding ADME properties early in drug development can help 

minimize the time, cost, and labor involved by focusing on compounds 

with promising profiles. This section evaluates the absorption, 

distribution, metabolism, and excretion characteristics of pyridine-4-

carbohydrazide derivatives (INH01–INH19), comparing them to the 

parent compound isoniazid (INH).  

(A) Absorption  

Absorption refers to the process by which a drug moves from the site of 

administration into systemic circulation(Currie, 2018b). Several 

parameters are used to evaluate the absorption potential of drug 

candidates: water solubility (LogS), human intestinal absorption (HIA), 

permeability across the Caco-2 cell line (LogPapp), skin permeability 

(LogKp), and their interactions with P-glycoprotein (P-gp I, II). These 

factors influence the bioavailability of a compound, especially when 

administered orally. The results of these parameters are summarized in 

Table 6A. 

 

Water solubility (logS):Water solubility is critical for drug formulation 

and absorption, particularly for oral delivery(Barrett et al., 2022;Delaney, 

2004). Low solubility can lead to poor bioavailability and impaired 

absorption, while high solubility can enhance drug dissolution and plasma 

concentration(Tran et al., 2023). The aqueous solubility of a substance is 

often expressed as log units of molar solubility (mol/L), or logS. The 

pyridine-4-carbohydrazide derivatives exhibit varying degrees of water 

solubility, ranging from -1.8896 to -4.042. Negative values reflect lower 

solubility. For example, INH01 (-2.076) and INH02 (-2.894) exhibit 

better solubility than isoniazid (-1.6), possibly due to simpler aromatic 

substitutions like phenyl (INH01) or hydroxyl groups (INH02), which 

slightly decrease solubility without significantly impairing absorption. On 

the other hand, derivatives like INH10 (-4.02), INH14 (-4.042), and 

INH17 (-3.643) show poor solubility, likely because of bulky or electron-

withdrawing groups, such as nitro or naphthyl rings, which hinder 

aqueous solubility. These low solubility values suggest that these 

derivatives may struggle with absorption, particularly in aqueous 

environments. 

Human intestinal absorption (HIA):HIA reflects how well a compound 

is absorbed through the intestinal lining(Azman et al., 2022), and a value 

over 80% is considered indicative of good absorption(Chander et al., 

2017; Pires et al., 2015). The HIA values for the pyridine-4-

carbohydrazide derivatives range from 83.21% to 96.43%, indicating that 

all compounds have good predicted absorption and are favorable for oral 

bioavailability. INH05 (96.317%) and INH14 (96.436%) show the 

highest absorption rates, suggesting that their methoxy-hydroxyphenyl 

and dimethylamino-naphthyl groups, respectively, enhance lipophilicity 

and passive diffusion through cell membranes. Conversely, INH10 

(83.223%) and INH03 (85.889%) demonstrate lower absorption due to 

the presence of nitro groups, which tend to reduce membrane 

permeability. Isoniazid itself shows a lower HIA value (75.651%), likely 

due to its simple structure and lack of lipophilic substituents that facilitate 

passive absorption. 

The Caco-2 cell line (Caco-2):The Caco-2 cell line is often used as a 

model for intestinal permeability(Kus et al., 2023). Compounds with a 

LogPapp value greater than 0.90 cm/s are considered to have high 

permeability(Pires et al., 2015). The pyridine-4-carbohydrazide 

derivatives show varying permeability values, ranging from -0.1 to 1.386. 

Compounds such as INH04, INH06, INH07, and INH09 exhibit high 

permeability, while others, including INH02, INH03, INH10, INH12, 

INH13, INH14, and INH17, show lower permeability. The reduced 

permeability of these compounds may be attributed to the presence of 

polar, bulky, or electron-withdrawing groups, which can impede passive 

diffusion across intestinal membranes. 

Skin permeability (LogKp):Skin permeability reflects the ability of a 

drug to penetrate the skin barrier, a critical factor for transdermal drug 

delivery systems(Cordery et al., 2017; Pensado et al., 2022; Tsakovska et 

al., 2017). Compounds with a LogKp value greater than -2.5 cm/h are 

considered to have relatively low skin permeability(Pires et al., 2015). 

The LogKp values of the pyridine-4-carbohydrazide derivatives range 

from -3.29 to -2.398, suggesting limited potential for transdermal 

absorption in most compounds. However, INH18, with a LogKp value of 



J. Surgical Case Reports and Images                                                                                                                                                                     Copy rights@ Abdul M Gbaj, 

Auctores Publishing LLC – Volume 8(3)-235 www.auctoresonline.org     
ISSN: 2690-1897                   Page 10 of 27 

-2.398, exhibits the highest skin permeability among the derivatives, 

indicating that this compound may have potential for transdermal drug 

delivery. 

 

Permeability glycoprotein (P-gp) interaction:P-gp is a membrane-

bound efflux transporter that can limit the bioavailability of drugs by 

actively pumping them out of cells, particularly in tissues such as the 

intestines, liver, and brain(Saaby & Brodin, 2017). Compounds that are 

substrates for P-gp may face reduced bioavailability, as the transporter 

pumps them out of cells before they can reach therapeutic 

concentrations(Elmeliegy et al., 2020; Nielsen et al., 2023). Moreover, P-

gp substrates can be further categorized into drugs that are not 

metabolized in humans and those that are substrates for both P-gp and 

drug-metabolizing enzymes, particularly CYP3A4. Given that many P-gp 

substrates are also metabolized by CYP3A4, and that P-gp inhibitors often 

inhibit CYP3A4 as well, numerous drug-drug interactions arise from the 

inhibition or induction of both P-gp and CYP3A4(Fromm, 2004; König 

et al., 2013). Several compounds in the study, including INH03, INH07, 

INH08, INH09, and INH12, are predicted to be substrates for P-gp, 

suggesting they may face reduced bioavailability due to efflux and 

possible metabolism by CYP3A4. In contrast, isoniazid and the other 

derivatives are not expected to interact with P-gp, which may result in 

better bioavailability by avoiding efflux. Additionally, most compounds 

are not predicted to inhibit P-gp, except for INH14, which inhibits both 

P-gp I and II. This inhibition could enhance bioavailability by preventing 

the efflux of co-administered drugs, making INH14 a potential candidate 

for combination therapies aimed at overcoming multidrug resistance, 

particularly in cancer treatments(Côrte-Real et al., 2019; Dong et al., 

2020; Waghray & Zhang, 2018). 

 

(D) Distribution  

Drug distribution refers to the reversible transfer of a drug within the 

body, from the bloodstream to various tissues(Berellini et al., 2009; Motl 

et al., 2006). It plays a crucial role in the ADMET process, as it influences 

the amount of drug that reaches target sites, affecting both efficacy and 

potential toxicity(Sun et al., 2022). The distribution properties of 

derivatives are evaluated using four key parameters: volume of 

distribution, fraction unbound, blood-brain barrier permeability, and 

central nervous system permeability, as shown in Table 6B.  

The Volume of Distribution (VDss) quantifies how extensively a drug 

disperses into body tissues relative to the bloodstream. Higher VDss 

values (closer to positive) indicate a greater extent of tissue 

distribution(Hsu et al., 2021). According to Pires et al., a compound is 

considered to have good tissue distribution if its VDss value exceeds 2.81 

L/kg (log VDss> 0.45) and poor distribution if it is below 0.71 L/kg (log 

VDss< -0.15)(Pires et al., 2015). The VDss values for the derivatives 

range from -0.432 to 0.212 Log L/kg, suggesting low to moderate tissue 

distribution. Notably, compounds such as INH02, INH07, INH08, 

INH09, INH14, INH15, and INH19 exhibit moderate tissue distribution, 

likely due to their aromatic structures, which enhance lipophilicity 

compared to isoniazid and other derivatives. 

Fraction Unbound (FU) represents the proportion of a drug in the plasma 

that remains unbound to proteins, with only the unbound fraction being 

pharmacologically active(Seyfinejad et al., 2021). A higher FU indicates 

a greater portion of the drug available to exert therapeutic 

effects(Watanabe et al., 2018). The FU values for the derivatives range 

from 0.031 to 0.333, with lower FU values corresponding to higher 

protein binding. Compounds such as INH14, INH19, and INH09, which 

contain extensive aromatic substituents, and INH03, INH10, and INH17, 

which contain nitro groups, show lower FU values. In contrast, isoniazid 

demonstrates the highest FU (0.728), significantly greater than most 

derivatives, reflecting minimal protein binding and suggesting a higher 

bioavailability for interaction with target sites. 

Blood-Brain Barrier (BBB) Permeability indicates a drug’s ability to 

cross the BBB, a selective barrier that regulates the entry of substances 

into the brainCrivori et al., 2000). Compounds with a LogBB> 0.3 are 

considered capable of crossing the BBB easily, while those with a 

LogBB< -1.0 face significant barriers(Pires et al., 2015). Most pyridine-

4-carbohydrazide derivatives demonstrate low BBB permeability, 

suggesting limited brain penetration. However, compounds INH15 and 

INH18 exhibit higher BBB permeability, indicating their potential for 

greater brain access. 

CNS Permeability (Log PS) further evaluates the ability of these 

compounds to penetrate the central nervous system. Compounds with a 

Log PS > -2 are considered capable of CNS penetration, while those with 

a Log PS < -3 are unlikely to cross the CNS barrier(Pires et al., 2015). 

For the derivatives studied, only INH19 exhibits a Log PS lower than -2, 

suggesting it has poor CNS penetration. The remaining derivatives 

exhibit moderate CNS permeability (Log PS between -2 and -3). 

Isoniazid, with a Log PS of -3.022, shows one of the lowest CNS 

permeabilities, indicating it is less likely to penetrate the CNS effectively, 

which aligns with its hydrophilic structure. 

3.5.3 | (M) Metabolism 

Drug metabolism is the process by which the body's enzymes chemically 

modify drug molecules. This is a vital defense mechanism against 

potential toxins, which are often lipid-soluble and can accumulate in the 

body. To facilitate excretion, these toxins are converted into more water-

soluble metabolites.Most drug metabolism occurs in the liver, where 

enzymes called hepatic microsomal enzymes catalyze the breakdown 

process.The metabolic properties of pyridine-4-carbohydrazide 

derivatives were assessed by evaluating their potential as substrates 

and/or inhibitors of key cytochrome P450 (CYP) enzymes, which are 

essential detoxifying enzymes predominantly expressed in the 

liver(Zanger & Schwab, 2013). To date, 57 distinct CYP isoforms have 

been identified in humans, of which five—CYP1A2, CYP2C9, 

CYP2C19, CYP2D6, and CYP3A4—play pivotal roles in drug 

metabolism(Wei et al., 2024). The metabolic pharmacokinetic 

characteristics of the compounds are presented in Table 6C.  

Among these isoforms, CYP3A4 and CYP2D6 are of particular clinical 

importance due to their significant involvement in the metabolism of 

various drugs. Inhibition of these enzymes can result in reduced drug 

clearance, elevated drug plasma concentrations, and potential adverse 

reactions. Conversely, if a compound serves as a substrate for these 

enzymes, it is likely to be efficiently metabolized, reducing the risk of 

side effects related to drug accumulation.Several pyridine-4-

carbohydrazide derivatives, including INH01, INH03, INH04, INH07, 

INH08, and INH10, are identified as substrates for CYP3A4, indicating 

their likelihood of efficient metabolic processing by this enzyme, thereby 

reducing the risk of accumulation-related side effects. Furthermore, most 

derivatives exhibit no significant inhibition of CYP2D6, CYP2E1 and 

CYP3A4, which is advantageous, as it suggests a lower potential for drug-

drug interactions and reduced risk of hepatotoxicity. Notably, INH18 acts 

as a dual substrate for both CYP3A4 and CYP2D6, further lowering the 

probability of metabolic interactions. Regarding CYP1A2, all derivatives 

except INH06 inhibit this isoform, potentially resulting in elevated 

plasma concentrations of co-administered drugs metabolized by CYP1A2 

and increasing the risk of drug-drug interactions. The inhibition of 

CYP1A2 may be linked to the presence of electron-withdrawing 

substituents, such as nitro and halogen groups, on the aromatic rings of 

these compounds, which likely facilitate interaction with the enzyme's 

active site. About CYP2C8, most derivatives inhibit this enzyme, with the 

exceptions of INH07, INH12, INH13, INH15 and INH16, which do not 

exhibit inhibitory activity. The inhibition observed in other derivatives 

may be attributed to structural features, such as bulky substituents, which 

could impede the enzyme's binding affinity. For CYP2C9, only INH14 

shows inhibitory activity, which may be ascribed to the presence of a 

dimethylaminonaphthyl group that interacts with the active site of 

CYP2C9. Several derivatives also exhibit inhibition of CYP2C19, 

including INH04, INH09, INH10, INH14, INH18, and INH19. Structural 

elements such as nitro groups in INH09 and INH10, and naphthyl groups 

in INH14 and INH19, likely contribute to this inhibitory activity by 
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introducing steric and electronic effects that influence binding to the 

CYP2C19 active site. 

(E) Excretion 

Excretion refers to the process by which drugs are eliminated from the 

body, and it is closely related to the concentration of the drug in the 

bloodstream and the rate of elimination(Talevi& Bellera, 2018). In this 

study, the excretion properties of pyridine-4-carbohydrazide derivatives 

(INH01–INH19) were evaluated based on their total clearance (CLtot) 

values, expressed in Log ml/min/kg, and their potential interaction with 

the Renal Organic Cation Transporter 2 (OCT2), as presented in Table 

6D. The total clearance (CLtot) values for the derivatives ranged from 

0.027 to 0.966 Log ml/min/kg. Isoniazid, the reference compound, 

exhibited a moderate clearance rate (Log CLtot = 0.782). Several 

derivatives showed clearance values close to this, suggesting that, despite 

structural modifications, the pyridine-4-carbohydrazide core structure 

contributes to a baseline level of metabolic stability. Derivatives with 

higher clearance rates (Log CLtot> 0.800), represented in Tuscan color, 

include INH05, INH06, INH10, INH11, INH14, and INH18. These 

compounds are cleared more rapidly from the body, indicating potentially 

shorter half-lives and a possible need for more frequent dosing. Structural 

features such as electron-withdrawing groups (e.g., nitro groups in INH10 

and INH11) or bulky aromatic substituents (e.g., the naphthyl group in 

INH14) likely enhance the compounds' interaction with metabolic 

enzymes, leading to increased clearance. In contrast, compounds INH01, 

INH02, INH03, INH07, INH08, INH09, INH12, INH13, INH15, INH17, 

INH19, and isoniazid exhibit moderate clearance rates (Log CLtot ~ 

0.700–0.800), indicated in green color. These derivatives typically feature 

less complex aromatic substitutions, which may reduce metabolic enzyme 

interactions, resulting in slower clearance rates. Compounds with 

moderate clearance rates are likely to remain in the body for a longer 

duration, which may enhance their ability to reach and maintain 

therapeutic levels at target sites. The lowest clearance rates (Log CLtot< 

0.700), represented in gray color, were observed for INH04 and INH16. 

INH04 contains a chlorine atom, while INH16 features a thiophene ring, 

both of which may reduce the compounds' susceptibility to metabolic 

breakdown and excretion, leading to lower clearance. Derivatives with 

low to moderate clearance may have extended half-lives, potentially 

increasing the risk of accumulation, but also offering the advantage of less 

frequent dosing. The role of OCT2 in renal clearance was also assessed. 

OCT2 is a key renal uptake transporter involved in the active secretion of 

drugs and endogenous compounds(Burckhardt & Wolff, 2000; Wright, 

2019). Predicting whether a compound interacts with OCT2 is crucial for 

understanding its excretion pathway and potential contraindications(Lin 

et al., 2023). Based on pkCSMpredictions, none of the derivatives, 

including isoniazid, were identified as OCT2 substrates. This suggests 

that these compounds are unlikely to be actively transported via OCT2, 

reducing the likelihood of their involvement in renal secretion(Bicker et 

al., 2020). Consequently, their clearance is more likely to be mediated 

through hepatic rather than renal pathways. This finding implies that renal 

toxicity and drug-drug interactions associated with OCT2 inhibition are 

not a major concern for these derivatives.   

   

Conclusion 

In drug discovery, understanding and predicting the physicochemical 

properties of compounds is essential to optimize their pharmacokinetic 

profiles. The pyridine-4-carbohydrazide derivatives examined in this 

study show a clear trend of improved physicochemical properties 

compared to the parent compound, isoniazid (INH). These enhancements 

are attributed to the structural modifications involving diverse aromatic 

substituents, resulting in derivatives with varied molecular weight, 

volume, hydrophobicity and hydrogen bonding capacity. Crucially, all 

examined compounds meet the criteria of Lipinski's Rule of Five and the 

Veber rule, suggesting they possess favorable drug-likeness 

characteristics, high permeability and biological availability. Despite their 

increased molecular complexity, these compounds maintain drug-likeness 

without violations, reinforcing their potential as drug candidates.  The 

bioactivity scores of the derivatives demonstrate that structural 

modifications significantly influence predicted interactions with various 

biological targets. Unlike isoniazid, which exhibits limited bioactivity 

across a range of targets, derivatives with aromatic electron-donating 

groups showed improved bioactivity. On the other hand, the presence of 

electron-withdrawing groups tends to diminish the compounds' biological 

activity. This highlights the importance of careful structural modification 

to optimize bioactivity profiles, as the electronic properties of these 

groups directly impact target binding affinities. The PASS predictions for 

the pyridine-4-carbohydrazide derivatives provide key insights into the 

impact of structural modifications on their pharmacological potential. 

Compounds such as INH03, INH09, INH14 and INH19 show high 

predicted activity across various therapeutic categories, positioning them 

as strong candidates for further experimental investigation. These 

derivatives demonstrate potential in antibacterial, antiviral, antiprotozoal, 

anti-inflammatory and anticancer applications. The observed structural 

modifications create opportunities for the discovery of novel bioactive 

agents, offering promising avenues for the development of new 

therapeutic interventions across a range of medical fields. 

The pharmacokinetic profiles of the pyridine-4-carbohydrazide 

derivatives also highlight the influence of structural modifications on 

absorption, distribution, metabolism and excretion. Many of the 

derivatives show improved absorption and permeability profiles 

compared to isoniazid, particularly those with electron-withdrawing or 

hydrophobic substituents. However, some derivatives face challenges 

such as limited solubility or interactions with P-glycoprotein (P-gp), 

necessitating further optimization to overcome these absorption barriers. 

In terms of distribution, bulky and lipophilic derivatives exhibit greater 

tissue penetration and blood-brain barrier permeability, suggesting their 

potential utility in treating CNS-related conditions. However, these 

modifications may also increase the risk of CNS side effects, requiring a 

balanced approach to design. Metabolic profiling highlights the influence 

of specific substituents on interactions with cytochrome P450 enzymes, 

with some derivatives, such as INH14, exhibiting enhanced CYP450 

inhibitory activity. This underscores the need to carefully consider 

structural modifications to minimize drug-drug interaction risks. 

Excretion rates also vary, with derivatives showing different clearance 

values. Those with higher clearance rates may require more frequent 

dosing, while others with lower clearance could risk accumulation. The 

absence of renal OCT2 interactions suggests hepatic clearance pathways, 

reducing the risk of renal toxicity. Overall, while these derivatives show 

promising pharmacological and pharmacokinetic profiles, further 

optimization and experimental validation will be essential to fully realize 

their therapeutic potential. 
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Codes 
N 

atoms 

Lipinski's Rule Veber Rule 
N 

violations 

of rule  

of 5 

Volume 

(Å 3) MW  

(Da) 
mi logP N ON N OHNH N rotb 

TPSA 

 (Å 2) 

INH01 17 225.25 1.81 4 1 3 54.35 0 205.94 

INH02 18 241.25 1.75 5 2 3 74.58 0 213.94 

INH03 20 270.25 1.74 7 1 4 100.18 0 229.28 

INH04 18 259.70 2.26 4 1 3 54.35 0 219.48 

INH05 20 268.32 1.91 5 1 4 54.59 0 239.51 

INH06 21 255.28 1.87 5 1 4 54.59 0 256.31 

INH07 20 271.28 1.15 6 2 4 83.82 0 251.85 

INH08 19 285.30 1.15 6 2 5 83.82 0 231.49 

INH09 22 291.31 2.91 5 2 3 74.58 0 257.95 

INH10 22 300.27 1.75 8 1 5 109.14 0 254.82 

INH11 20 271.28 1.78 6 2 4 83.82 0 239.51 

INH12 20 270.25 1.77 7 1 4 100.18 0 229.28 

INH13 16 215.21 1.07 5 1 3 67.49 0 187.51 

INH14 24 318.38 3.02 5 1 4 57.59 0 295.84 

INH15 18 239.28 2.26 4 1 3 54.35 0 222.50 

INH16 16 231.28 1.71 4 1 3 54.35 0 196.65 

INH17 20 270.25 1.72 7 1 4 100.18 0 229.28 

INH18 19 251.29 2.03 4 1 4 54.35 0 233.63 

INH19 21 275.31 2.99 4 1 3 54.35 0 249.93 

INH 10 137.14 - 0.97 4 3 1 68.01 0 122.65 

 

Table 4A: Physicochemical Properties and Drug-Likeness Scores for the Predicted Compounds. 

Abbreviations: Number of nonhydrogen atoms (N atoms); Molecular 

Weight (MW); Logarithm of partition Coefficient Between n-octanol and 

water LogP); Number of hydrogen bond acceptors (N-ON,O, and N 

atoms); Number of Hydrogen Bond Donors (N-OHNH,OH, and NH 

groups); Number of Rotatable Bonds (N-rotb),Topological Polar Surface 

area (TPSA); and Number of violations (N violations); Number of 

violations (N violations); and Molecular volume (Å3). 

 

Codes 

Bioactivities score 

EI KI GPCR PI NRC ICM 

INH01 -0.49 -0.59 -0.65 -0.93 -1.02 -0.87 

INH02 -0.40 -0.49 -0.53 -0.75 -0.77 -0.9 

INH03 -0.52 -0.54 -0.62 -0.83 -0.84 -0.82 
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INH04 -0.48 -0.55 -0.55 -0.88 -0.94 -0.81 

INH05 -0.38 -0.32 -0.42 -0.68 -0.69 -0.77 

INH06 -0.45 -0.47 -0.54 -0.8 -0.81 -0.87 

INH07 -0.36 -0.36 -0.44 -0.75 -0.66 -0.79 

INH08 -0.38 -0.38 -0.43 -0.7 -0.57 -0.78 

INH09 -0.3 -0.27 -0.31 -0.48 -0.48 -0.67 

INH10 -0.54 -0.47 -0.54 -0.73 -0.75 -0.90 

INH11 -0.33 -0.40 -0.54 -0.66 -0.61 -0.90 

INH12 -0.50 -0.54 -0.61 -0.83 -0.83 -0.80 

INH13 -0.77 -1.00 -0.98 -1.25 -1.55 -1.06 

INH14 -0.23 -0.17 -0.11 -0.40 -0.38 -0.58 

INH15 -0.51 -0.56 -0.62 -0.90 -0.94 -0.91 

INH16 -0.70 -0.99 -1.01 -1.12 -1.48 -1.24 

INH17 -0.59 -0.63 -0.67 -0.84 -0.77 -0.83 

INH18 -0.31 -0.64 -0.35 -0.65 -0.79 -0.81 

INH19 -0.29 -0.26 -0.31 -0.50 -0.59 -0.68 

INH -0.66 -1.05 -1.39 -1.23 -2.33 -1.45 

 

Table 4B: Bioactivity score of compounds according to Molinspiratin cheminformatics. 

 

Abbreviations: G protein-coupled receptor (GPCR) ligand, Ion channel 

modulator (ICM), Kinase inhibitor (KI), Nuclear receptor ligand (NRL), 

Protease inhibitor (PI), Enzyme inhibitor (EI). The gray color represents 

inactive and the green color represents moderate bioactivity under the 

scores reflect the predicted bioactivity, with more negative values 

indicating lower predicted activity for a given target. 

 

Codes 

Probability of 

Activity 

(Pa) 

Probability of 

Activity 

(Pi) 

Therapeutic Activity 

INH01 

0,913 0,002 Glutamine-phenylpyruvate transaminase inhibitor 

0,908 0,004 Taurine dehydrogenase inhibitor 

0,895 0,003 Amine dehydrogenase inhibitor 

0,880 0,003 Threonine aldolase inhibitor 

0,860 0,002 Antituberculosic 

0,855 0,004 HMGCS2 expression enhancer 

0,853 0,003 Isopenicillin-N epimerase inhibitor 

0,851 0,008 Beta-adrenergic receptor kinase inhibitor 

0,851 0,008 G-protein-coupled receptor kinase inhibitor 

0,840 0,003 Antimycobacterial 

0,822 0,002 Phenylalanine(histidine) transaminase inhibitor 

0,813 0,003 Antiviral (Picornavirus) 

0,812 0,004 Phosphatidylserine decarboxylase inhibitor 

0,776 0,003 PfA-M1 aminopeptidase inhibitor 

0,759 0,002 Serine-pyruvate transaminase inhibitor 

0,748 0,003 Trimethylamine dehydrogenase inhibitor 



J. Surgical Case Reports and Images                                                                                                                                                                     Copy rights@ Abdul M Gbaj, 

Auctores Publishing LLC – Volume 8(3)-235 www.auctoresonline.org     
ISSN: 2690-1897                   Page 14 of 27 

Codes 

Probability of 

Activity 

(Pa) 

Probability of 

Activity 

(Pi) 

Therapeutic Activity 

0,743 0,003 Nicotinamidase inhibitor 

0,743 0,004 Mcl-1 antagonist 

0,734 0,008 Antiviral (Poxvirus) 

0,720 0,029 Nicotinic alpha6beta3beta4alpha5 receptor antagonist 

 

INH02 

0,901 0,002 Antituberculosic 

0,900 0,002 Threonine aldolase inhibitor 

0,897 0,004 Taurine dehydrogenase inhibitor 

0,891 0,003 Amine dehydrogenase inhibitor 

0,872 0,003 HMGCS2 expression enhancer 

0,866 0,003 Antimycobacterial 

0,862 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,831 0,003 Phosphatidylserine decarboxylase inhibitor 

0,836 0,009 Beta-adrenergic receptor kinase inhibitor 

0,836 0,009 G-protein-coupled receptor kinase inhibitor 

0,769 0,003 Nicotinamidase inhibitor 

0,768 0,003 PfA-M1 aminopeptidase inhibitor 

0,767 0,004 Isopenicillin-N epimerase inhibitor 

0,725 0,004 Mcl-1 antagonist 

0,723 0,007 Corticosteroid side-chain-isomerase inhibitor 

0,715 0,005 Antiviral (Picornavirus) 

0,709 0,004 Phenylalanine(histidine) transaminase inhibitor 

 

INH03 

0,930 0,002 Antituberculosic 

0,896 0,003 Antimycobacterial 

0,863 0,002 Antiviral (Picornavirus) 

0,854 0,003 Phosphatidylserine decarboxylase inhibitor 

0,851 0,004 HMGCS2 expression enhancer 

0,839 0,008 Taurine dehydrogenase inhibitor 

0,801 0,003 Nicotinamidase inhibitor 

0,775 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,747 0,005 Amine dehydrogenase inhibitor 

0,742 0,003 PfA-M1 aminopeptidase inhibitor 

0,737 0,004 Mcl-1 antagonist 

 

INH04 

0,909 0,003 Taurine dehydrogenase inhibitor 

0,881 0,003 Amine dehydrogenase inhibitor 

0,860 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,844 0,003 Antituberculosic 

0,844 0,004 HMGCS2 expression enhancer 

0,839 0,003 Antimycobacterial 

0,804 0,013 G-protein-coupled receptor kinase inhibitor 

0,804 0,013 Beta-adrenergic receptor kinase inhibitor 

0,788 0,003 Antiviral (Picornavirus) 
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Codes 

Probability of 

Activity 

(Pa) 

Probability of 

Activity 

(Pi) 

Therapeutic Activity 

0,782 0,005 Threonine aldolase inhibitor 

0,751 0,003 PfA-M1 aminopeptidase inhibitor 

0,709 0,005 Isopenicillin-N epimerase inhibitor 

0,705 0,004 Phenylalanine(histidine) transaminase inhibitor 

0,705 0,007 CYP2A8 substrate 

0,708 0,011 Phosphatidylserine decarboxylase inhibitor 

0,703 0,009 Antiviral (Poxvirus) 

0,748 0,055 Phobic disorders treatment 

 

INH05 

0,890 0,002 Antituberculosic 

0,871 0,003 Antimycobacterial 

0,846 0,004 Amine dehydrogenase inhibitor 

0,843 0,007 Taurine dehydrogenase inhibitor 

0,814 0,004 Threonine aldolase inhibitor 

0,760 0,007 HMGCS2 expression enhancer 

0,748 0,003 Cytoprotectant 

0,748 0,018 Beta-adrenergic receptor kinase inhibitor 

0,748 0,018 G-protein-coupled receptor kinase inhibitor 

0,727 0,009 Phosphatidylserine decarboxylase inhibitor 

0,721 0,009 Glutamine-phenylpyruvate transaminase inhibitor 

 

INH06 

0,913 0,002 Antituberculosic 

0,880 0,005 G-protein-coupled receptor kinase inhibitor 

0,880 0,005 Beta-adrenergic receptor kinase inhibitor 

0,873 0,003 Antimycobacterial 

0,752 0,006 Phosphatidylserine decarboxylase inhibitor 

0,736 0,004 Cytoprotectant 

0,727 0,008 Threonine aldolase inhibitor 

0,709 0,009 HMGCS2 expression enhancer 

0,706 0,030 Taurine dehydrogenase inhibitor 

 

INH07 

0,946 0,002 Taurine dehydrogenase inhibitor 

0,800 0,004 Antimycobacterial 

0,800 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,797 0,003 Antituberculosic 

0,798 0,005 HMGCS2 expression enhancer 

0,787 0,005 Amine dehydrogenase inhibitor 

0,780 0,005 Threonine aldolase inhibitor 

0,759 0,006 Phosphatidylserine decarboxylase inhibitor 

0,752 0,004 Antiviral (Picornavirus) 

0,743 0,008 Antiviral (Poxvirus) 

0,719 0,021 Beta-adrenergic receptor kinase inhibitor 

0,719 0,021 G-protein-coupled receptor kinase inhibitor 
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Codes 

Probability of 

Activity 

(Pa) 

Probability of 

Activity 

(Pi) 

Therapeutic Activity 

INH08 

0,895 0,003 Amine dehydrogenase inhibitor 

0,889 0,004 Taurine dehydrogenase inhibitor 

0,847 0,003 Antimycobacterial 

0,845 0,003 Antituberculosic 

0,811 0,012 Beta-adrenergic receptor kinase inhibitor 

0,811 0,012 G-protein-coupled receptor kinase inhibitor 

0,803 0,005 HMGCS2 expression enhancer 

0,800 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,766 0,005 Threonine aldolase inhibitor 

0,747 0,004 Antiviral (Picornavirus) 

0,744 0,035 Gluconate 2-dehydrogenase (acceptor) inhibitor 

0,710 0,004 Cytoprotectant 

 

INH09 

0,865 0,005 Taurine dehydrogenase inhibitor 

0,864 0,003 Amine dehydrogenase inhibitor 

0,862 0,002 Antituberculosic 

0,851 0,003 Threonine aldolase inhibitor 

0,848 0,003 Antimycobacterial 

0,799 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,792 0,005 HMGCS2 expression enhancer 

0,773 0,005 Phosphatidylserine decarboxylase inhibitor 

0,743 0,004 Isopenicillin-N epimerase inhibitor 

0,730 0,020 Beta-adrenergic receptor kinase inhibitor 

0,730 0,020 G-protein-coupled receptor kinase inhibitor 

0,710 0,004 Cytoprotectant 

 

INH10 

0,924 0,002 Antituberculosic 

0,904 0,002 Antimycobacterial 

0,865 0,003 HMGCS2 expression enhancer 

0,778 0,016 Taurine dehydrogenase inhibitor 

0,754 0,006 Phosphatidylserine decarboxylase inhibitor 

0,741 0,004 Transcription factor STAT3 inhibitor 

0,708 0,003 PfA-M1 aminopeptidase inhibitor 

0,708 0,005 Antiviral (Picornavirus) 

 

INH11 

0,891 0,002 Antituberculosic 

0,879 0,003 Amine dehydrogenase inhibitor 

0,874 0,003 Antimycobacterial 

0,863 0,005 Taurine dehydrogenase inhibitor 

0,839 0,004 HMGCS2 expression enhancer 

0,809 0,004 Threonine aldolase inhibitor 

0,792 0,014 G-protein-coupled receptor kinase inhibitor 

0,792 0,014 Beta-adrenergic receptor kinase inhibitor 

0,776 0,003 Cytoprotectant 
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Codes 

Probability of 

Activity 

(Pa) 

Probability of 

Activity 

(Pi) 

Therapeutic Activity 

0,723 0,009 Phosphatidylserine decarboxylase inhibitor 

0,716 0,003 PfA-M1 aminopeptidase inhibitor 

0,714 0,009 Glutamine-phenylpyruvate transaminase inhibitor 

0,722 0,045 Gluconate 2-dehydrogenase (acceptor) inhibitor 

 

INH12 

0,928 0,002 Antituberculosic 

0,895 0,003 Antimycobacterial 

0,872 0,002 Phosphatidylserine decarboxylase inhibitor 

0,864 0,003 HMGCS2 expression enhancer 

0,862 0,005 Taurine dehydrogenase inhibitor 

0,854 0,003 Antiviral (Picornavirus) 

0,845 0,002 Nicotinamidase inhibitor 

0,823 0,004 Glutamine-phenylpyruvate transaminase inhibitor 

0,789 0,004 Amine dehydrogenase inhibitor 

0,762 0,004 Mcl-1 antagonist 

0,753 0,003 PfA-M1 aminopeptidase inhibitor 

0,718 0,008 Threonine aldolase inhibitor 

0,718 0,009 Antiviral (Poxvirus) 

0,718 0,040 Acrocylindropepsin inhibitor 

0,718 0,040 Chymosin inhibitor 

0,718 0,040 Saccharopepsin inhibitor 

 

INH13 

0,956 0,001 HMGCS2 expression enhancer 

0,928 0,002 Antituberculosic 

0,913 0,003 Mcl-1 antagonist 

0,904 0,002 Antimycobacterial 

0,796 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,792 0,003 Isopenicillin-N epimerase inhibitor 

0,791 0,004 Amine dehydrogenase inhibitor 

0,761 0,003 PfA-M1 aminopeptidase inhibitor 

0,748 0,003 Neuropeptide Y2 antagonist 

0,746 0,022 Taurine dehydrogenase inhibitor 

0,720 0,008 Threonine aldolase inhibitor 

0,707 0,004 Amyloid beta precursor protein antagonist 

 

INH14 

0,912 0,003 Taurine dehydrogenase inhibitor 

0,762 0,006 HMGCS2 expression enhancer 

0,702 0,008 Amine dehydrogenase inhibitor 

 

INH15 

0,889 0,004 Taurine dehydrogenase inhibitor 

0,876 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,867 0,003 Amine dehydrogenase inhibitor 

0,866 0,002 Antituberculosic 

0,847 0,003 Antimycobacterial 
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Codes 

Probability of 

Activity 

(Pa) 

Probability of 

Activity 

(Pi) 

Therapeutic Activity 

0,830 0,004 HMGCS2 expression enhancer 

0,808 0,004 Threonine aldolase inhibitor 

0,813 0,012 G-protein-coupled receptor kinase inhibitor 

0,813 0,012 Beta-adrenergic receptor kinase inhibitor 

0,804 0,003 Isopenicillin-N epimerase inhibitor 

0,804 0,004 Phosphatidylserine decarboxylase inhibitor 

0,761 0,004 Antiviral (Picornavirus) 

0,754 0,003 PfA-M1 aminopeptidase inhibitor 

0,740 0,004 Phenylalanine(histidine) transaminase inhibitor 

0,710 0,003 Serine-pyruvate transaminase inhibitor 

0,711 0,009 Antiviral (Poxvirus) 

 

INH16 

0,796 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,771 0,004 CYP2E1 inhibitor 

0,761 0,004 Antimycobacterial 

0,759 0,004 Antituberculosic 

0,753 0,004 Mcl-1 antagonist 

0,747 0,022 Taurine dehydrogenase inhibitor 

0,721 0,003 PfA-M1 aminopeptidase inhibitor 

 

INH17 

0,861 0,005 Taurine dehydrogenase inhibitor 

0,845 0,004 HMGCS2 expression enhancer 

0,841 0,003 Phosphatidylserine decarboxylase inhibitor 

0,838 0,003 Antituberculosic 

0,809 0,004 Antimycobacterial 

0,800 0,005 Glutamine-phenylpyruvate transaminase inhibitor 

0,788 0,004 Amine dehydrogenase inhibitor 

0,783 0,004 Arylalkyl acylamidase inhibitor 

0,776 0,004 
Aldehyde dehydrogenase (pyrroloquinoline-quinone) 

inhibitor 

0,768 0,003 Nicotinamidase inhibitor 

0,765 0,004 Antiviral (Picornavirus) 

0,734 0,003 Phenylalanine racemase (ATP-hydrolysing) inhibitor 

0,708 0,009 Threonine aldolase inhibitor 

 

INH18 

0,860 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,841 0,004 Amine dehydrogenase inhibitor 

0,836 0,008 Taurine dehydrogenase inhibitor 

0,824 0,003 Antituberculosic 

0,807 0,004 Antimycobacterial 

0,802 0,004 Threonine aldolase inhibitor 

0,761 0,004 Thiol protease inhibitor 

0,750 0,004 Isopenicillin-N epimerase inhibitor 

0,726 0,009 Phosphatidylserine decarboxylase inhibitor 

0,710 0,004 Mcl-1 antagonist 
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Codes 

Probability of 

Activity 

(Pa) 

Probability of 

Activity 

(Pi) 

Therapeutic Activity 

0,705 0,004 Phenylalanine(histidine) transaminase inhibitor 

 

INH19 

0,883 0,004 Taurine dehydrogenase inhibitor 

0,876 0,003 Glutamine-phenylpyruvate transaminase inhibitor 

0,861 0,003 Amine dehydrogenase inhibitor 

0,838 0,003 Isopenicillin-N epimerase inhibitor 

0,825 0,004 Threonine aldolase inhibitor 

0,825 0,004 HMGCS2 expression enhancer 

0,770 0,003 Antituberculosic 

0,753 0,004 Antimycobacterial 

0,751 0,006 Phosphatidylserine decarboxylase inhibitor 

0,740 0,004 Phenylalanine(histidine) transaminase inhibitor 

0,715 0,005 Antiviral (Picornavirus) 

 

INH 

0,968 0,001 Taurine dehydrogenase inhibitor 

0,926 0,001 Trimethylamine dehydrogenase inhibitor 

0,847 0,004 Amine dehydrogenase inhibitor 

0,842 0,003 Isopenicillin-N epimerase inhibitor 

0,825 0,004 
Aldehyde dehydrogenase (pyrroloquinoline-quinone) 

inhibitor 

0,816 0,004 Arylalkyl acylamidase inhibitor 

0,810 0,003 Antituberculosic 

0,798 0,004 Antimycobacterial 

0,790 0,003 Nitrilase inhibitor 

0,782 0,002 Maillard reaction inhibitor 

0,781 0,014 Nicotinic alpha6beta3beta4alpha5 receptor antagonist 

0,761 0,001 Aralkylamine dehydrogenase inhibitor 

0,774 0,015 Glucose oxidase inhibitor 

0,754 0,008 Manganese peroxidase inhibitor 

0,757 0,013 Arylacetonitrilase inhibitor 

0,758 0,016 Nicotinic alpha2beta2 receptor antagonist 

0,738 0,004 N-methylhydantoinase (ATP-hydrolysing) inhibitor 

0,739 0,009 Nucleoside oxidase (H2O2-forming) inhibitor 

0,730 0,004 Nicotinate dehydrogenase inhibitor 

0,724 0,010 Peroxidase inhibitor 

0,739 0,030 Nootropic 

0,713 0,008 Aspartate-phenylpyruvate transaminase inhibitor 

0,712 0,013 Phthalate 4,5-dioxygenase inhibitor 

0,716 0,031 Glycosylphosphatidylinositol phospholipase D inhibitor 

0,701 0,076 Phobic disorders treatment 

 

Table 5: PASS prediction Properties of the Predicted Compounds. 

Abbreviations: Tuscan shading indicates the probability of activity values, and Gray represents the probability of inactivity values. 
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Codes LogS HIA  Caco-2 LogKp 
P-gp 

subs 

P-gp I 

Inhi 

P-gp II 

Inhi 

INH01 -2.076 93.954 1.329 -2.682 No No No 

INH02 -2.894 93.974 0.745 -3.29 No No No 

INH03 -3.641 85.889 -0.1 -2.67 Yes No No 

INH04 -3.011 93.211 1.353 -2.677 No No No 

INH05 -2.957 96.317 1.328 -2.767 No No No 

INH06 -3.003 95.629 1.382 -2.713 No No No 

INH07 -3.572 94.695 1.386 -3.06 Yes No No 

INH08 -3.004 94.276 1.369 -3.048 Yes No No 

INH09 -3.322 94.223 1.086 -2.778 Yes No No 

INH10 -4.02 83.223 0.265 -2.742 No No No 

INH11 -3.013 94.858 1.197 -2.909 No No No 

INH12 -3.052 85.921 0.194 -2.68 Yes No No 

INH13 -1.8896 95.967 0.801 -3.116 No No No 

INH14 -4.042 96.436 -4.042 -2.678 No Yes Yes 

INH15 -3.237 95.012 1.322 -2.568 No No No 

INH16 -3.321 93.537 1.317 -2.694 No No No 

INH17 -3.643 84.54 0.235 -2.79 No No No 

INH18 -3.415 92.813 1.35 -2.398 No No No 

INH19 -3.554 94.021 1.374 -2.518 Yes No No 

INH -1.6 75.651 0.627 -3.173 No No No 

 

Table 6A: Absorption Properties of the Predicted Compounds. 

Abbreviations: Water solubility (logS, log mol/L), Human Intestinal Absorption (HIA, %), Human colon epithelial cancer cell line (Caco-2, Log 

Papp; log cm/s), Skin permeability (LogKp; cm/h), Permeability glycoprotein I, II (P-gp I, II). Gray shading indicates low values, green represents 

moderate values, and Tuscan signifies high values. Pink shading and "Yes" denote an effect on the target, while white shading and "No" indicate 

no effect on the target. 

Codes VDss FU  LogBB Log PS 

INH01 -0.349 0.204 0.205 -2.252 

INH02 -0.149 0.333 -0.184 -2.497 

INH03 -0.232 0.076 -0.518 -2.484 

INH04 -0.276 0.203 0.146 -2.141 

INH05 -0.201 0.262 0.252 -2.805 

INH06 -0.407 0.221 0.22 -2.859 

INH07 -0.097 0.214 -0.38 -2.947 

INH08 -0.015 0.17 -0.404 -2.946 
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INH09 0.114 0.098 0.053 -2.216 

INH10 -0.329 0.071 -0.854 -2.742 

INH11 -0.322 0.227 -0.479 -2.986 

INH12 -0.277 0.118 -0.553 -2.491 

INH13 -0.612 0.45 -0.3 -2.881 

INH14 0.212 0.031 0.271 -2.108 

INH15 -0.049 0.201 0.34 -2.254 

INH16 -0.298 0.293 0.261 -2.836 

INH17 -0.431 0.089 -0.574 -2.472 

INH18 -0.012 0.107 0.317 -2.246 

INH19 0.081 0.067 0.208 -1.973 

INH -0.432 0.728 -0.117 -3.022 

 

Table 6B:  Distribution Properties of the Predicted Compounds. 

Abbreviations: Distribution Volume in Humans (VDSS, Log L/kg), Fraction Unbound (FU), Blood blood-brain barrier Permeability (LogBB), and 

Central Nervous System Permeability (LogPS). Gray shading indicates low values, green represents moderate values, and Tuscan signifies high 

values.  

Codes 

CYP 

1A2 

CYP 

3A4 

CYP 

2C9 

CYP 

2C19 

CYP 

2D6 

Inhi Inhi Subs Inhi Inhi Inhi Subs 

INH01 Yes No Yes No No No No 

INH02 Yes No No No No No No 

INH03 Yes No Yes No No No No 

INH04 Yes No Yes No Yes No No 

INH05 Yes No No No No No No 

INH06 No No Yes No No No No 

INH07 Yes No Yes No No No No 

INH08 Yes No Yes No No No No 

INH09 Yes No Yes No Yes No No 

INH10 Yes No Yes No Yes No No 

INH11 Yes No No No No No No 

INH12 Yes No Yes No No No No 

INH13 Yes No No No No No No 

INH14 Yes No Yes Yes Yes No No 

INH15 Yes No Yes No No No No 
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INH16 Yes No No No No No No 

INH17 Yes No Yes No No No No 

INH18 Yes Yes Yes No Yes No No 

INH19 Yes No Yes No Yes No No 

INH No No No No No No No 

Table 6C:  Metabolism Properties of the Predicted Compounds. 

Abbreviations: CYP (Cytochrome P450), Inhi (Inhibitor), Subs (Substrate). The pink color and "Yes" indicate an effect on the target, while the 

white color and "No" indicate no effect on the target. 

Codes 

Excretion 

CLtot 

Log ml/min/kg 

Renal OCT2 substrate 

(Yes/ No) 

INH01 0.717 No 

INH02 0.665 No 

INH03 0.744 No 

INH04 -0.054 No 

INH05 0.873 No 

INH06 0.822 No 

INH07 0.771 No 

INH08 0.821 No 

INH09 0.684 No 

INH10 0.834 No 

INH11 0.841 No 

INH12 0.712 No 

INH13 0.757 No 

INH14 0.966 No 

INH15 0.759 No 

INH16 0.027 No 

INH17 0.691 No 

INH18 0.834 No 

INH19 0.678 No 

INH 0.782 No 

 

Table 6D:  Excretion Properties of the Predicted Compounds.

Abbreviations 

Total clearance (CLtot), Organic cation transporter 2 (OCT2). The gray 

color represents low, the green color represents moderate, and the 

Tuscan color represents high clearance in accordance with the value by 

Log ml/min/kg. 
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