A. Krishna Sailaja *

Review Article

Study of Natural Excipients in Semi-Solid Dosage Forms

A. Krishna Sailaja*, Bayya Hrushitha, Bandra Ausha, Chinthakunta Deepika Reddy, Kommireddy Tejaswini

Department of Pharmaceutics, RBVRR Women's college of Pharmacy, Hyderabad.

*Corresponding Author: A. Krishna Sailaja, Department of Pharmaceutics, RBVRR Women's college of Pharmacy, Hyderabad.

Received date: February 10, 2025; Accepted date: February 18, 2025; Published date: February 25, 2025

Citation: A. Krishna Sailaja, Bayya Hrushitha, Bandra Ausha, Chinthakunta Deepika Reddy, Kommireddy Tejaswini, (2025), Study of Natural Excipients in Semi-Solid Dosage Forms, *J. Clinical Case Reports and Studies*, 6(2); **DOI**:10.31579/2690-8808/245

Copyright: ©, 2025, A. Krishna Sailaja. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A significant proportion of pharmaceutical dosage forms are semi solid preparations. They serve as carriers f drugs that are topically delivered by way of the skin, cornea, rectal tissue, nasal mucosa, vagina, buccal tissu urethral membrane, and external ear lining. This data collection's goal is to give readers a comprehensi understanding of the different tools, tactics, crucial process variables, and production and validation procedur processes specific to semisolid dosage forms.

Key Words: semi-solid dosage forms; excipients; natural excipients

Introduction

Typically, topical semisolid dose forms are in the shape of pastes, ointments, gels, or creams. The ease of use, quick formulation, and capacity to topically administer a broad range of drug molecules are all benefits of a semisolid dosage form. There are many different dose forms for semisolids, and each

has special qualities. In addition to any appropriate excipients, such as emulsifiers, viscosity-increasing agents, antimicrobial agents, antioxidants, or stabilizing agents, they comprise one or more active substances that have been dissolved or evenly distributed in an appropriate base.

Figure 1: Semi solid dosage forms

Advantages for semi solid dosage forms:

- It is used externally
- Probability of side effect can be reduced
- Local action

- First pass gut and hepatic metabolism is avoided.
- Patient compliance is increased, the drug termination is problematic cases is facilitated as compared with other routes of drug administration [1]

Formulation	Description
Ointments	Ointments are homogenous, semi-solid preparations intended for external application to the skin or mucous membrane.
Creams	Creams are homogeneous, semi-solid preparations consisting of opaque emulsion systems.
Gels	Gels are usually homogeneous, clear, semi-solid preparations consisting of a liquid phase within a three-dimensional polymeric
	matrix with physical or sometimes chemical cross-linkage by means of suitable gelling agents.
Pastes	Pastes are homogeneous, semi-solid preparations containing high concentrations of insoluble powdered substances (usually not
	less than 20%) dispersed in a suitable base
Poultice	A poultice is an ancient form of topical medication also known as a cataplasm. It is a soft mass of vegetable constituents or clay,
	usually heated before application.[2]

Table 1: Types of semi-solid dosage forms

Ointment: Ointments are homogenous, semi-solid preparations intended for external application to the skin or mucous membrane. They are used as emollients or for the application of active ingredients to the skin for protective, therapeutic, or prophylactic purpose and where a degree of occlusion is desired.

Advantage of ointments as a dosage forms:

Nonreactive

•

- Non-irritating
- Good emollient, protective, and occlusive properties
- Not water-washable so they stay on the skin and keep incorporated medications in contact with the skin[2]

Inexpensive

Emulsifying agent	Cotton seed oil, Paraffin wax, Beeswax, Palm oil
Humectants	Propanediol, vegetable glycerine, honey, marine collagen
Preservatives	Clove oil, Neem oil, Cumin seeds, Cayenne pepper
Antioxidants	Peppermint, Rosemary, Cinnamon, Saffron
Oleaginous bases	Castor oil, Lanolin, Mineral oil, Sunflower oil [3]

Table 2: Excipients used in ointments

OINTMENT BASES: The vehicle or carrier of an ointment is known as ointment base. The choice of ointment base depends upon the nature of medicament, stability of ointment and clinical indication of the ointment. [4]

Property	Oleaginous compounds	Oleaginous bases + w/o surfactant	Oleaginous base + water	Polyethylene glycol
Water content	Anhydrous	Anhydrous	hydrous	Anhydrous hydrous
Affinity for water	Hydrophobic	Hydrophilic	Hydrophilic	Hydrophilic
Spread ability	Difficult	Difficult	Easy	Moderate- easy
Washability	Non washable	Non washable	washable	washable
Stability	Oils poor,	Oils poor, hydrocarbon	Unstable especially alkali	Stable
	hydrocarbon better	better	soap and natural colloids	

Table 3: Properties of different ointment bases

Ideal properties of Ointment bases

- Chemically and physically stable under normal conditions of use and storage
- Nonreactive and compatible with a wide variety of drugs and auxiliary agents
- Free from objectionable odor
- Nontoxic, non-sensitizing, and nonirritating
- Aesthetically appealing, easy to apply, and nongreasy
- Remains in contact with the skin until removal is desired, then is removed easily [5].

Excipient	BS	Family	Synonym	Use	Formulation
Castor oil	It is obtained from seeds of Ricinus communis	Euphorbiaceae	Ricinoleic acid	Ointment base	Topical ointments
Sunflower oil	It is obtained from fruits and seeds of Helianthus annus	Compositae	Helianthus annus oil Oleum helianthin	Ointment base	Skin creams Lotions
Mineral oil	It is a mixture of refined liquid saturated aliphatic and cyclic hydrocarbons obtained from petroleum	_	Heavy mineral oil, Liquid petroleum	Ointment base	Opthalmic formulations, Transdermal contraceptive patches, Suppositories
Lanolin	It is obtained from wool of sheep, Ovis Aries linn	Bovidae	Refined wool fat	Ointment base	Creams, Ointments, Suppositories [6]

Ideal properties of natural emulsifying agents:

Table 5: Details of various natural oils as excipients in semi-solid dosage forms

EMULSIFYING AGENT: Emulsions are liquid disperse systems consisting of two immiscible phases, one of which is dispersed as globules in the other liquid phase [7]. The two phases of emulsions are stabilized by the presence of an emulsifier. The droplet diameter of the dispersed phase extends from about 0.1 to 10 μ M, although particle diameters as small as 0.01 μ M and as large as 100 μ M are not uncommon. The consistency of emulsions ranges from that of a liquid (e.g., fat emulsions) to a semisolid (e.g., ointments and creams]

• Emulsions exhibit all of the properties of a colloidal solution, including Brownian movement, Tyndall effect, and electrophoresis.

- The addition of electrolytes containing polyvalent metal ions coagulates the globules, demonstrating their negative charge.
- In emulsions, the size of the dispersed particles is bigger than in sols. It has a range of 1000 to 10,000 Å. The size, on the other hand, is less than that of particles in suspensions

Excipient	BS	Family	Synonym	Use	Formulation
Soybean oil	It is extracted from seeds of soybean plant(Glycine max)	Fabaceae	Soy oil	Emulsifying agent	Creams
Paraffin wax	Paraffin wax is manufactured by distillation of crude petroleum or shale oil.		Paraffin durum	Emulsifying agent	ointments
Beeswax	Bees wax is obtained from the honey comb of the bee	Apidae.	Cagesoft, Dynasanp60	Emulsifying agent	Ointments
Palm oil	the oil obtained from the pulp of the fruit of the oil palm Elaeis guineensis jacq	Aceraceae.	Cage soft Dynasanp60	Emulsifying agent	Creams Ointments [8]

HUMECTANT: these are an important group of cosmetic ingredients and will be found in most skin care products that contain an aqueous phase. Humectants moisturise the skin in a unique way. They attract water to the skin.[9]

Ideal properties of natural humectants:

- Good odour and taste
- Non-corrosive to packaging material
- Non-toxic, non-irritant
 - compatible with other materials
- Not solidify or crystallize at normal condition

Excipient	BS	Family	Synonym	Use	Formulation	
Marine collagen	Derived from fish collagen peptides	-	Fish collagen	Humectant	Creams, serums	
Honey	Produced by our little bee friends	Apidae.	Madhu	Humectant	Ointments, Creams, Syrups	
Vegetable glycerine	Derived from plant sources, glycerine is a thick sweet, sticky liquid	-	Glycerol	Humectant	Ointments	
Propanediol	Derived from cane sugar	-	-	Humectant	Lotions, Cleansers [10]	
Table 7: Details of various natural humactants as excipients in semi-solid dosage forms						

PRESERVATIVES: Preservatives are usually used to minimize the shelf life of several food products and pharmaceuticals. Preservatives are vital to avoid the alteration and degradation of microorganisms during storage. Particularly in those with greater water content [11] **Ideal properties of natural Preservatives:**

- ai properties of natural Preservat
 - It should not be irritant.
 - To maintain product consistency.

- To maintain palatability and wholesomeness.
- It should not be toxic.
- It should be stable (physically and chemically).
- It should be compatible with all other ingredients
- It should be acting as good antimicrobial agent
- It should be potent in action.
- It should have higher shelf life

Excipient	BS	Family	Synonym	Use	Formulation
Lemon oil	Extracted from the peel of citrus limon fruit	Rutaceae	Citrus limon peel oil	Preservative	Shampoos Pastes
Neem oil	Fruits of azadirachta Indica	Meliaceae	Margosa oil	Preservative	Shampoos, Creams
Cumin seeds	Seeds of Cuminum cyminum	Apiaceae	Nigella	Preservative	Suppositories
Cayenne pepper	Fruits of piper nigrum	piperaceae	Chilli pepper	Preservative	Topical ointments
					Creams [12]

Table 8: Details of various natural preservatives as excipients in semi-solid dosage forms

ANTIOXIDANTS: Antioxidants are substances which counteract free radicals and prevent the damage caused by them. These can greatly reduce the adverse damage due to oxidants by crumbling them before they react with biologic targets, preventing chain reactions or preventing the activation of oxygen to highly reactive products

- Ideal properties of natural Antioxidants:
- It should be stable
- It should be effective in low concentration

Auctores Publishing LLC – Volume 6(2)-245 www.auctoresonline.org ISSN: 2690-8808

J. Clinical Case Reports and Studies

• It should be compatible

It should be non-toxic [13

Excipient	BS	Family	Synonym	Use	Formulation
Catechin	It is a flavonoid antioxidant found in many plants, fruits, and vegetables	-	Flavanol	Antioxidant	Creams
Wheat bran	Its comes from the outer layers of the wheat kerneal	Gramineae	Cereal fiber Dietary fiber	Antioxidant	Nano emulsions [14]
Saffron	Saffron consists of the dried stigma of the flowers of the crocus bulb, crocus sativus		Kesar, Jafran	anti- oxidant.	Creams lotions

Table 9: Details of various natural humactants as excipients in semi-solid dosage forms

Creams:

Creams consist of opaque emulsion systems and are semi-solid, homogenous formulations. The kind of emulsion—water-in-oil (w/o) or oil-in-water (o/w)—as well as the makeup of the solids in the internal phase determine their consistency and rheological characteristics. Creams are designed to be applied to the skin or specific mucous membranes for preventive, therapeutic, or protective reasons, particularly in situations where an occlusive effect is not required. Topical medicines that can be applied to the skin are called creams. "Viscose liquid or semi-solid emulsions of either the oil-in-water or water-in-oil type" dosage forms, with varying oil and water contents, are referred to as creams. [15]

Ideal Properties Of Creams

- Inert
- Stable
- Smooth
- Compatible with the skin
- Non-irritating
- Should release the incorporated medicaments readily.

Types of skin creams:

They are separated into two categories: An **oil-in-water** (O/W) emulsion is one in which the oil is distributed as droplets throughout the aqueous phase, whereas oil-in-water (O/W) creams are made up of tiny oil droplets distributed in a continuous phase. Creams known as **water-in-oil** (W/O) are made up of tiny water droplets scattered across an oily layer. The emulsion is of the water-in-oil (W/O) type when the dispersed phase is water and the dispersion medium is oil.

Cream types based on its purpose, unique qualities, and emulsion type:

- Make-up cream (o/w emulsion): a) Vanishing creams. b) Foundation creams.
- Cleansing lotion (without emulsion), cleansing milk, and cleansing cream
- Winter cream (without emulsion): a) Moisturising or cold cream.
- General and all-purpose creams.
- Massage and night creams.
- Skin protective cream.
- Hand and body creams.[16]

Thickening agent	Agar, Guar Gum, Xanthan Gum, Carrageenan				
Emulsifying agent	Cotton seed oil, Paraffin wax, Beeswax, Palm oil				
Preservatives Clove oil, Neem oil, Tea tree oil, Ginger oil					
Antioxidants Peppermint, Rosemary, Cinnamon, Saffron					
Table 10: Excipints Used In Creams:					

Thickening agent:

A thickening agent, sometimes known as a thickener, is a material that can raise a liquid's viscosity without significantly altering its other characteristics. In addition to being used in paints, pigments, explosives, and cosmetics, edible thickeners are frequently used to thicken sauces, soups, and puddings without changing their flavour. Additionally, thickeners can enhance the suspension of other ingredients or emulsions, increasing the product's stability.

Ideal properties of natural thickening agents:

It should have proper texture

Maintain consistencTemperature [17]

AgarAgar is mainly extracted from species of Gelidium amansiiGelidaceaeAgar-agar, agar gum, gelidium- amansiiThickening agentSupposito agentGuar gumGuar gum is obtained from the endosperm of the seeds of the guar plantLeguminosaeCyamopsis tetragonoloba gum, galactose gum, guaranThickening agentGels Opthalmic preparationXanthan gumXanthan gum is obtained from the bacteria gumPseudomonadaceae corn sugar gum.Corn sugar gum.Thickening agentoral gels Topical preparation	Excipient	BS	Family	Synonym	Use	Formulation
Guar gumGuar gum is obtained from the endosperm of the seeds of the guar plantLeguminosaeCyamopsis tetragonoloba gum, galactose gum, guaranThickening agentGels Opthalmic preparatioXanthan gumXanthan gum is obtained from the bacteria Xanthomonas campestrisPseudomonadaceae corn sugar gum.Corn sugar gum.Thickening agentoral gels Topical preparation	Agar	Agar is mainly extracted from species of Gelidium amansii	Gelidaceae	Agar-agar, agar gum, gelidium- amansii	Thickening agent	Suppositories
Xanthan gumXanthan gum is obtained from the bacteria Xanthomonas campestrisPseudomonadaceae corn sugar gum.Thickening agentoral gels Topical preparation	Guar gum	Guar gum is obtained from the endosperm of the seeds of the guar plant	Leguminosae	Cyamopsis tetragonoloba gum, galactose gum, guaran	Thickening agent	Gels Opthalmic preparations
	Xanthan gum	Xanthan gum is obtained from the bacteria Xanthomonas campestris	Pseudomonadaceae	corn sugar gum.	Thickening agent	oral gels Topical preparations
CarrageenanCarrageenan as the hydrocolloid obtained by extraction with water or aqueous alkaliRhodophyceaeCapsulesThickening agentTopical pr	Carrageenan	Carrageenan as the hydrocolloid obtained by extraction with water or aqueous alkali	Rhodophyceae	Capsules	Thickening agent	Topical products

Table 11: Details of various natural thickening agent as excipients in semi-solid dosage forms

Formulation	Company[Brand]	Dosage form	Excipient used
Kumkumadi alowing aroam	Khadi natural	Semi solid dosage form	Saffron
	Blush-Bee	Semi solid dosage form	Cochineal
Vegan lipsticks	Lodha petro	Semi solid dosage form	Lanolin
Lanolin wax	Baidyanath	Semi solid dosage form	Mineral oil
Herbal lotions	Expanscience laboratories	Semi solid dosage form	Sunflower oil
Mustela Hydrating cream	Labh additives	Semi solid dosage form	Ceratonia

J. Clinical Case Reports and Studies

Conclusion:

Pharmaceutical excipients derived from natural sources have attracted a great attention in developing convectional dosage forms and novel drug delivery systems. The use of natural excipients is steadily increasing day by day due to the side effects of synthetic excipients. Hence natural excipients are being preferred over synthetic as they are cheap, biodegradable and enhance the bioavailability, stability, safety, efficacy and patient compliance. Therefore, there is going to be a great interest in natural excipients to obtain a better dosage form.

Reference

- 1. Xiong Y, Zhang X, Ma X, Wang W, Yan F, et al., (2021), A review of the properties and applications of bioadhesive hydrogels. *Polymer Chemistry*. 12(26):3721-3739.
- 2. Priya K, Gupta VR, Srikanth K. (2011), Natural sweeteners: A complete review. *Journal of Pharmacy Research*. 4(7):2034-2039.
- 3. Biswal PK, Mishar MK, Bhadouriya AS, Yadav VK. (2015), AN UPDATED REVIEW ON COLORANTS AS THE PHARMACEUTICAL EXCIPIENTS. International Journal of Pharmaceutical, Chemical & Biological Sciences. 5(4).
- 4. Poonam V, Sagar G, Abhishek K, Yuvraj S. (2018), Remarkable contribution of natural excipients in finished pharmaceutical products (FPPs). *International Journal of Pharmaceutical Sciences and Research*. 52(1):7-14.
- Lachman, (1991), Lieberman "The Theory and Practice of Industrial Pharmacy" Fourth Edition, Published By – Varghese Publishing House, 479 to 530.
- Bhowmik D, Srivastava S, Paswan S, Dutta AS. (2012), Taste Masked Suspension. *The Pharma Innovation*. Apr 1;1(2, Part A).
- Mann A S, Jain N K, Kharya M D. (2007), Evaluation of the Suspending Properties of Cassia tora Mucilage on Sulphadimidine Suspension, *Asian J. Exp.* Sci., 21(1), 63-67.
- 8. De S, Malik S, Ghosh A, Saha R, Saha B. (2015), A review on natural surfactants. RSC advances.;5(81):65757-65767

Copy rights @ Elizaveta I Bon,

- Salama, A.I.A.; Mikula, R.J. (1996), Particle and Suspension Characterization in Suspensions, Fundamentals and Applications in the Petroleum Industry; Schramm, L.L. (Ed.), *American Chemical Society: Washington*, pp. 45–106
- De Villiers M. (2009), Surfactants and emulsifying agents. A Practical Guide to Contemporary Pharmacy Practice; Thompson, JE, Ed.; *Lippincott Williams and Wilkins: Philadelphia*, PE, USA. 251
- 11. Lachman L, Lieberman HA, Kaing JL. (1976), The theory and practice of industrial pharmacy. Philadelphia: *Lea & Febiger*;
- The United States Pharmacopeial Convention, Inc.Chapter (1151). 2008 USP 31/NF 26. Rockville, MD: Author, 2007; 617–621.
- Marshall K, Foster TS, Carlin HS, Williams RL. (2003), Development of a compendial taxonomy and glossary for pharmaceutical dosage forms. Pharmacopeial Forum. Rockville, MD: The United States Pharmacopeial Convention, Inc., 29(5).
- 14. Lieberman H, Rieger M, Banker GS, editors. (2020), Pharmaceutical dosage forms: Disperse systems. CRC Press.
- De Villiers M. (2009), Surfactants and emulsifying agents. A Practical Guide to Contemporary Pharmacy Practice; Thompson, JE, Ed.; Lippincott Williams and Wilkins: *Philadelphia*, PE, USA. 251
- Poonam V, Sagar G, Abhishek K, Yuvraj S. (2018), Remarkable contribution of natural excipients in finished pharmaceutical products (FPPs). *International Journal of Pharmaceutical Sciences and Research*. 52(1):7-14.
- Bhaskar R, Ola M, Patil PH, Nawandar KS. (2016), A review on: ointment and ointment bases. World Journal of Pharmaceutical Research. 5(9):335-345.
- Shah RN, Methal BM, (1992), A Hand book of Cosmetics Page No.1 2. Myers D, Surfactant Science and Technology, VCH Publishers, Pp. 209-247.
- Saha D, Bhattacharya S. (2010), Hydrocolloids as thickening and gelling agents in food: a critical review. *Journal of food science and technology*. Dec;47: 587-597.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here: Submit Manuscript

DOI:10.31579/2690-8808/245

Ready to submit your research? Choose Auctores and benefit from:

- ➢ fast, convenient online submission
- > rigorous peer review by experienced research in your field
- > rapid publication on acceptance
- > authors retain copyrights
- > unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <u>https://auctoresonline.org/journals/journal-of-clinical-case-reports-and-studies</u>