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Abstract 

Objective: The gut microbiome has evolved as a considerable factor in cerebral aneurysm formation through a complex and 

multifaceted relationship. This would uncover potential insights into how dysbiosis and inflammation may contribute to the 

development of an aneurysm and subsequent rupture. This article aims to shed new light on our understanding of this intricate 

biological interplay. 

Results:  

A link between the gut microbiome and cerebral aneurysms was observed. The dysbiosis in the gut microbial community can 

cause inflammation and metabolic disorders, elevating the risk of ruptured aneurysms. Inflammation triggers cerebral 

aneurysm formation and rupture. There appears to be a significant difference in the microbial flora between patients with 

stable and unstable unruptured intracranial aneurysms. 

Conclusion:  

The maintenance of overall health depends on the gut microbiome, which also may contribute to developing cerebral 

aneurysms. Any changes in microbial metabolite production or dysbiosis can lead to inflammation and metabolic disorders 

that increase susceptibility to aneurysm formation and rupture. By conducting further studies exploring the link between gut 

microbes and this condition, new preventive as well as therapeutic measures could be developed. 
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Introduction 

The human gut microflora, a complex ecosystem of microorganisms, has 

emerged as a critical factor in maintaining overall health [1]. Human-

associated microbiota refers to a complex ecosystem of microorganisms 

comprising a wide variety of bacteria, archaea, viruses, protozoa, fungi, and 

eukaryotic microbes [2]. Gut microbiota produces different metabolites, 

playing an important role including homeostasis, signaling, metabolism, 

immune regulation, and immune- inflammatory axes [3-5]. Dysbiosis is any 

alterations in the composition of resident commensal communities relative 

to the community found in healthy individuals [6]. Bacteroides and 

firmicutes are the main bacterial phyla found in stool samples, and 

Proteobacteria and Actinobacteria are small portions but present in most of 

the population [6]. Dysbiosis in the gut microbiome or alterations in the 

microbial metabolite production can lead to various diseases, including 

neurodegeneration, nervous system dysregulation, neurological disorders 

like Parkinson's disease and multiple sclerosis, digestive, metabolic, 

psychiatric, allergic, rheumatologic, atherosclerotic disorders and cancers 

where inflammation and inflammatory mediators play an essential role in 

determining of the progression and severity of the disease [7, 8]. Recent 

studies have elucidated an intricate relationship between the gut microbiome 

and several neurological disorders. Chronic inflammation is one of the 

important conditions that may lead to an aneurysm rupture by infiltration of 

cells and cytokines [9, 10]. Gut microbiota is a factor that affects the course 

and severity of human inflammatory disorders [9, 10].  

The gut microbiome is associated with cardiovascular diseases such as 

atherosclerosis [11-13]. The gut microbiome also plays an important role in 

hypertension and heart failure [14-16]. Modulation of metabolic and 

immunoregulatory axes are the pathways through which gut microbiome 

affects illnesses' course and severity [10, 17, 18]. Diet has the most 

significant effect on determining the diversity and composition of the gut, 

and other environmental factors are lifestyle, physical activity, smoking, and 
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alcohol [17, 19, 20]. The "gut-microbiota-brain” (GBA) axis is a critical 

pathway in humans and animals. It is defined as a network of connections 

and interactions involving several complex systems and organs, including 

the central nervous system (CNS), autonomic nervous system (ANS), enteric 

nervous system (ENS), and hypothalamic pituitary adrenal (HPA) axis. This 

axis enables bidirectional communication between enteric microbiota and 

the brain [21]. 

This neuro-immuno-endocrine axis uniquely maintains gastrointestinal, 

CNS, microbial metabolism, and homeostasis [22, 23]. Several studies have 

demonstrated that gut microbiota significantly impacts GBA, interacting 

with various pathways, such as locally with intestinal cells and ENS and 

directly with CNS through neuroendocrine and metabolic pathways [8]. 

Recent studies have elucidated the intricate relationship between the gut 

microbiome and several neurological disorders, including ischemic stroke 

and aneurysms. Furthermore, the gut microbiome is associated with the 

progression and modulation of neurological disease outcomes. Unruptured 

cerebral aneurysms (CAs) affect 3-5% of the general population. Studies 

suggest that gut microbiota dysbiosis and inflammation may contribute to 

the pathogenesis of brain aneurysms. Inflammatory cells, markers, and 

mediators are also associated with the increased risk of ruptured aneurysms 

[24]. Inflammatory alterations that participate in CA formation and rupture 

are leukocyte infiltration, endothelial dysfunction, phenotypic modulation, 

loss of smooth muscle cells (SMCs), vascular remodeling, cell death, and 

macrophage (M1/M2) imbalance [25]. A recent hypothesis suggested a 

significant difference in the kind of microbiome profile between patients 

with stable and unstable unruptured intracranial aneurysms (UIAs). This 

difference can result in chronic inflammation and pathophysiological 

alterations in the aneurysm wall, eventually resulting in ruptured aneurysms 

(RAs) [9]. Although the relationship between the gut microbiome and brain 

aneurysms is not yet fully comprehended, the emerging evidence 

underscores the importance of investigating this association [26]. 

Understanding the role of the gut microbiome in the development and 

progression of brain aneurysms could lead to innovative preventive and 

therapeutic approaches for this condition [27]. Therefore, this narrative 

review will provide an updated overview to clarify the relationship between 

the gut microbiome and cerebral aneurysms. 

Cerebral aneurysms and gut microbiome 

The gut microbiome is a complex ecosystem of microorganisms that is 

crucial in maintaining overall health. Recent studies have implicated the gut 

microbiome in various neurological disorders, including cerebral aneurysms 

(CA) [28]. An unruptured intracranial aneurysm (UIA) is a life-threatening 

condition with a 3% prevalence. Rupture of UIAs is detected in 80-85% of 

subarachnoid hemorrhages, which is associated with catastrophic 

complications [9, 28, 29]. Several genetic and environmental factors play an 

important role in developing ruptured aneurysms (RAs) [9]. An imbalance 

in the proportion of gut flora has been suggested to be associated with an 

intracranial aneurysm [10]. For instance, Shikata et al. performed an animal 

model study and demonstrated that the administration of antibiotics leads to 

the depletion of the gut microbiome and the reduction of macrophage 

infiltration and mRNA levels of inflammatory cytokines [10]. The gut 

microbiome depletion led to a reduced incidence of intracranial aneurysms 

(Table 1) [10]. Li et al. demonstrated that Hungatella Hathewayi reduces the 

taurine levels, a protective against intracranial aneurysm, and could develop 

an intracranial aneurysm in mice [28]. Kawabata et al. showed that the 

abundance of Campylobacter in the gut microbiome is associated with the 

rupture of UIAs [9]. Sun et al. exhibited that the Ruminococcaceae and 

Clostridiales families are higher in symptomatic vs. asymptomatic UIA 

patients [29]. They also demonstrated a significant decrease in propanoate 

metabolism and increased peptidoglycan biosynthesis in the gut microbiome 

of symptomatic patients [29]. Correspondingly, previous studies 

demonstrated that Plasma Trimethylamine N-oxide (TMAO) levels were 

elevated in AAA patients, and this was positively correlated with abdominal 

aneurysm growth rate [30-32]. A study also showed that a diet high in 

choline significantly increased plasma TMAO levels, abdominal aortic 

diameter, and AAA incidence in an AAA mouse model [32]. The gut 

microbiota's role in AAA formation and progression was demonstrated by 

the significant reduction in plasma TMAO levels and attenuation of AAA 

when the gut microbiota was suppressed with antibiotics [31, 32]. 

Additionally, providing TMAO to mice lacking intact gut microbiota 

increased plasma TMAO levels, aortic diameter, and AAA incidence, 

indicating that TMAO contributes directly to AAA pathogenesis. These 

findings suggest that interventions targeting TMAO or the gut microbiota 

may have therapeutic potential in preventing or treating AAA [31, 32]. 

Nonetheless, Emonds et al. demonstrated, despite of initial assumption that 

individuals with elevated TMAO levels would be more susceptible to SAH, 

actually observed that patients with SAH had lower levels of plasma TMAO 

upon admission to the hospital when compared to control subjects who had 

nerve, nerve root, or plexus disorders [33]. Identifying any distinct pattern in 

the plasma TMAO levels of SAH patients seems to need further 

comprehensive research. 

Table 1. Association between the Gut microbiome and cerebral aneurysms 

Study Year Type of study Cases Outcome 

Kawabata etal (9) 2022 Case-control study 61 The relative abundance of Campylobacter and Campylobacter 

ureolyticus was reported to be higher in ruptured than unruptured 

Li et al. (34) 2020 Case-control 140 By reduction in taurine level, Hungatella Hathewayi 

plays as protective agent against intracranial aneurysm 

Sun et al. (29) 2022 Case-control 132 The Ruminococcaceae and Clostridiales families are higher in 

symptomatic than asymptomatic UIA patients 

Table 1: Association between the Gut microbiome and cerebral aneurysms 

Mechanism of CA formation and pathogens 

The gastrointestinal tract is an important immune organ and includes 70% of 

the immune system [35]. The gut-microbiota-host interaction plays an 

important role in the maturation and modulation of the immune system [36]. 

The inflammatory process that leads to the development of CAs is started by 

a hemodynamic insult that causes matrix metalloproteinases (MMPs)-

mediated degradation of the extracellular matrix and apoptosis of smooth 

muscle cells (SMPs) that are the main cells of the vessel wall [25]. Overall,  

these processes weaken the cell wall and aneurysm formation and, 

eventually, rupture of the aneurysm [25]. The two main cells participating in 

the process are macrophages and SMCs [25]. Previous studies demonstrated 

decreased levels of SMC (type 22a) due to the release of inflammatory 

cytokines and MMPs by macrophages with exceeding additional 

inflammatory cells, which leads to abdominal aorta aneurysms [25, 37, 38]. 

Moreover, Xie et al. concluded abundance of Akkermansia, Odoribacter, 

Helicobacter, and Ruminococcus might be dominant in the progression of 

AAAs in mice models [39]. In addition, increased Lactobacillus and 
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Prevotella copri with decreased Bifidobacteria and Bacteroides levels lead to 

chronic inflammatory diseases such as colitis or rheumatic arthritis [40]. 

Meanwhile, inhibition of MMPs and monocyte chemoattractant protein-1 

(MCP-1) prevents CA formation or its progression [41, 42]. M1 and M2 

macrophages possess proinflammatory and anti-inflammatory 

characteristics, respectively, and both are present in CAs in an equal ratio 

[25]. In RAs, an increase in M1 cells is observed, and the M1/M2 imbalance 

leads to the rupture [43]. 

SMCs are the main matrix-synthesizing cells in the vessel wall and are 

mostly located in the media layer [25]. The media layer provides the integrity 

of the vessel wall, and its thinning results in the CA formation [25]. During 

the early phases of CA formation, SMCs migrate to the intima layer and 

undergo phenotypic modulation via tumor necrosis factor-α (TNF-α), 

Kruppel-like transcription factor 4 (KLF-4), and interleukin-1β (IL-1β) that 

promotes inflammation and matrix breakdown [25, 44-46]. On the other 

hand, Zhang et al. found higher levels of Proteobacteria, Enterobacteriaceae, 

Anaerostipes, and Coprococcus in patients with abdominal aorta aneurysms 

with a direct effect on SMC integrity [47]. Furthermore, Ito et al. presented 

that the abundance of B. adolescentis decreased in patients with AAA related 

to loosening vessel walls [48]. The modulated SMCs are not able to provide 

the integrity of the vascular wall and synthesize collagen [25]. In case of 

rupture, SMCs are decreased and undergo apoptosis in the media layer, and 

the activity of caspases is increased [24, 49, 50]. Another cell that has a role 

in the pathogenesis of CAs is the mast cell [25]. Mast cells are major immune 

parts that actively play roles in neurodegenerative CNS diseases such as 

chronic pain, Parkinson's disease, and neurovascular [51- 53]. Dysbiosis in 

the gut-brain axis and an increase in the number of mast cells are observed 

during CA formation, and their degranulation results in the induction of the 

expression and activation of the MMPs [25]. A study demonstrated that the 

upregulation of mast cells is more in RAs than UIAs [43]. The inhibition of 

mast cells results in the prevention of CA progression [54]. 

Inflammatory cytokines play an important role in CAs, and TNFs and ILs 

are the most important ones [26]. TNF-α is the most important cytokine in 

the CA formation process. It activates neutrophils and lymphocytes, 

increases the permeability of vessels s the metabolic activity of tissues, and 

promotes the release of other cytokines [46, 55]. TNF-α promotes 

inflammation and apoptosis in vessels; subsequently, the vessel wall's 

weakening occurs, and the CAs are developed [46, 56]. The inhibition of 

TNF-α reduces the rupture rate of CAs in the animal model [46, 57]. ILs act 

on immune cells and lead to immune cells' maturation, activation, 

proliferation, and regulation [58]. IL-1 is an important factor in 

inflammation, immune regulation, and neurodegeneration [58]. IL-1β 

promotes the infiltration of immune cells and the formation of aneurysms 

[46]. Gut microbiota affects the formation of CAs via modulation of 

inflammation within the aneurysmal walls [10]. Another mechanism is 

attributed to the transmigration of gut bacteria into the cerebral vessels [10]. 

Shikata et al. induced gut microbiota depletion through an oral antibiotic 

cocktail of ampicillin, metronidazole, neomycin, and vancomycin. The gut 

microbiota depletion significantly reduced the development of CAs by 

means of decreasing macrophage infiltration and the expression of pro-

inflammatory cytokines such as IL-1b and IL-6 in vascular wells [10]. 

Kawabata et al. demonstrated that cells infected with Campylobacter 

ureolyticus produced significantly higher levels of IL-8, MMP-8, MMP-9, 

myeloperoxidase, and human neutrophil elastase. Therefore, enhanced 

cytokines, neutrophil-derived proteolytic, and oxidative stress by 

Campylobacter may promote vascular remodeling of CA walls and 

ultimately, combined with hemodynamics and genetics, change UIA into RA 

[9]. 

 

Conclusion: 

There is a potential link between an imbalance in gut flora and an increased 

risk of cerebral and abdominal aneurysms. Dysbiosis in the gut-brain axis 

results in an inflammatory process leading to aneurysm formation involves 

the degradation of the extracellular matrix and apoptosis of SMCs, which 

can be inhibited by targeting MMPs and MCP-1. Interventions targeting 

specific gut metabolites increased in intra-cranial neurovascular accidents or 

the gut microbiota may have therapeutic value in preventing or treating 

aneurysms. Further research is necessary to fully understand the relationship 

between the gut microbiome and aneurysms. 

Abbreviations: 

PICO = Population-Intervention-Comparison-Outcomes 

SAH = Subarachnoid hemorrhage GBA = Gut-microbiota-brain 

CNS = Central nervous system ANS = Autonomic nervous system ENS = 

Enteric nervous system 

HPA = Hypothalamic pituitary adrenal CA = Cerebral aneurysms 

SMC = Smooth muscle cells 

UIA = Unruptured intracranial aneurysms RA = Ruptured aneurysms 

WOS = Web of Science 

NOS = Newcastle-Ottawa Scale TMAO = Trimethylamine N-oxide AAA = 

Abdominal aortic aneurysms MMP = Matrix metalloproteinases 

MMP-8 = Matrix metalloproteinases -8 MMP-9 = Matrix metalloproteinases 

- 9 

MCP-1 = Monocyte chemoattractant protein-1 TNF- α = tumor necrosis 

factor-α 

KLF-4 = Transcription factor 4 IL-1β = Interleukin-1β 

IL-1 = Interleukin-1 IL-8= Interleukin-8 
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