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Abstract  

Gut microbiota, the collection of microorganisms harboring the gut of all mammals, are essential for the host’s physiology, 

metabolism, intestinal homeostasis and immune system development and function. The advancement of technology has 

allowed a better understanding of the gut microbial communities and their metabolites, how they influence the host’s 

physiology and homeostasis, and how they also influence the susceptibility of the host to many diseases and disorders. In 

this mini - review, we will focus on discussing the influence of gut microbiota-derived metabolites on intestinal homeostasis  

by balancing gut microbiome composition, epithelial barrier integrity and immune activation. 
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Introduction 

The mammalian intestine harbors a diverse and active community of 

trillions of microorganisms [1]. The dynamic host-microbiota interaction 

is important for the host’s physiology and homeostasis. Maintaining 

mutualistic symbiotic host-microbiome relationship allows the host to 

adapt diverse saccharolytic enzymes that complement the limited 

saccharolytic diversity encoded in the mammalian genome [2]. 

Coordinated crosstalk among microbiota, and the host’s intestinal 

epithelial and immune cells ensure intestinal homeostasis and avoid 

abberant immune activation [3,4]. Perturbation of the symbiotic host-

microbiome interaction leads to dysbiosis -an imbalance of the 

composition or function of microbiome-, which is associated with 

inflammatory bowel diseases (IBD) such as Crohn’s disease (CD) and 

ulcerative colitis (UC) [5,6]. Recent genome-wide association studies and 

animal models suggest that dysfunction of tight junctions (TJ) in the 

intestine is associated with the pathogenesis of IBD [5,7]. Moreover, 

dysbiosis is associated with alterations in allergies [8], metabolic 

disorders [9], and immune-related diseases [10].  

Dysbiosis is caused by environmental factors such as a changes of the diet 

and antibiotics that may destroy the epithelial barrier function and initiate 

a proinflammatory response [11]. The gut microbiome is crucial for the 

metabolism of diverse dietary compounds to produce active metabolites 

that provide information to the host about the microbiome composition, 

the existence of pathogens, or other environmental stress (12). With the 

advancment of metabolomics analysis technologies, it has become 

available to observe changes of different types of metabolites in IBD 

patients in comparison with healthy subjects, such as bile acids, medium- 

and short- chain fatty acids, and polyamines [13]. Numerous studies have 

reported that the impact of the gut microbe metabolites on gut barrier 

function [14]. Besides, there are clinical trials microbiome bioactive 

metabolites to restore the healthy intestinal barrier function in IBD 

patients [15–17].  

In this mini - review, we will discuss how the intestinal microbiota 

metabolites regulate gut barrier function, epithelial proliferation, balanced 

gut microbiota composition, and intestinal immune activation. 

Short-chain fatty acids  

The human diet is rich in dietary fiber and indigestible carbohydrates that 

cannot be digested in the proximal digestive system. Instead, they are 

fermented by gut commensals, including Bifidobacterium, Bacteroides, 

Enterobacter, Faecalibacterium, and Roseburia species, which produce 

short-chain fatty acids (SCFAs) as a byproduct [18]. SCFAs mainly 

comprise acetate, propionate and butyrate [19,20]. SCFAs impact gut 

microbiota composition and the host’s metabolism and immune responses 

(21). Abberant levels of SCFAs are linked to disease development such 

as diabetes, obesity, and colorectal cancer [22].   

SCFAs boost TJ protein expression, paracellular transport, zonula 

occludens (ZO)-1 and occludin (OCLN) maintenance, inhibit NLR family 

pyrin domain containing 3 (NLRP3) inflammasome activation, and 

enhance autophagy [23]. In addition, high concentrations of SCFA 

enhances anion release, which maintains gut microbiome symbiosis 

[24,25]. Diets rich in SCFAs promote colonic mucin-2 (MUC2) and 
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OCLN expression, enhancing gut barrier function, and butyrate may 

reduce inflammation-induced barrier disruption [26,27]. Furthermore, 

SCFAs regulate intestinal barrier by stimulating the secretion of 

antimicrobial peptides and secretory immunoglobulin A (sIgA), which 

prevent the adherence and invasion of harmful bacteria [28]. Butyrate 

serves as the primary energy source for colonocytes [29], with human 

colonocytes from different regions utilizing over 70% of oxygen through 

butyrate oxidation [30]. Patients with IBD exhibit dysbiosis and reduced 

levels of SCFAs/butyrate-producing bacteria [21].  

Bile acids  

Bile acids (BAs) are synthesized in its primary form by pericentral 

hepatocytes, followed by their transfer to the gut via enterohepatic 

circulation [31]. The conversion of primary BAs into their secondary form 

is executed by the gut microbiota such as Bifidobacterium, Bacteroides, 

Clostridium, Lactobacillus, Enterobacter [32,33]. In humans, primary 

bile acids include cholic acid (CA) and chenodeoxycholic acid (CDCA) 

converted into secondary bile acids such as deoxycholic acid (DCA), 

ursocholic acid, ursodeoxycholic acid (UDCA), and lithocholic acid 

(LCA). In mice the primary bile acids are cholic acid, CDCA, 6-

hydroxylated bile acids, and muricholic acid, which further converted into 

the secondary bile acids DCA, ursocholic acid, UDCA, murideoxycholic 

acid, and hyodeoxycholic acid [34].  

Secondary BAs exert multiple biological functions on the intestine via 

binding to the nuclear membrane farnesoid X receptor (FXR) and the G 

protein–coupled receptor; Takeda G protein-coupled receptor 5 (TGR5)  

in the intestines [35]. In human epithelial cell line, Caco-2, modification 

of the composition of BAs alters the permeability of the intestinal mucosa 

and impact the function of the barrier by regulating the expression of tight 

junction proteins [36]. For example, mice undertaken high fat in their diet 

have an increse in DCA, which is a major risk factor enhancing colorectal 

cancer [37]. UDCA supplementation has been shown to attenuate 

inflammation and reduce intestinal permeability caused by multidrug-

resistant extended-spectrum β-lactamase (ESBL)-producing E. coli in 

colibacillus diarrhea of newborn dairy calves [38].  

Furthermore, BAs modulate immune responses in the intestine [39]. Two 

derivatives of LCA, 3-oxoLCA and isoalloLCA, suppress T helper 17 

(Th17) cell differentiation and increased the differentiation of Treg cells 

through the production of mitochondrial reactive oxygen species [40]. In 

addition, BAs impact the function of macrophages and affect the 

homeostasis of the intestinal immune barrier. High-fat diet impacts bile 

acids (e.g., increased CA and DCA), gut microbiota composition, pro-

inflammatory macrophage polarization, which subsequently leads to 

intestinal inflamamtion [41,42].  

Polyamines 

Polyamines regulate multiple cellular functions including cell 

development, amino acid and protein synthesis, oxidative DNA damage, 

proliferation and differentiation [43]. The natural polyamines, including 

spermidine, spermine, and their precursor putrescine are important for the 

host’s physiology, mainly for intestinal maturation and the differentiation 

and development of immune system [33,44,45]. Gut microbes such as E. 

coli, Bacteroides spp. and Fusobacterium spp. can synthesize polyamines 

[46]. Multiple studies have shown that polyamines are essential for 

maintaing the intestinal barrier through enhancing the expression of TJs 

and adherens junctions (AJs) [47–50]. Additionally, polyamines suppress 

gut mucosal inflammation by inhibiting inflammatory cytokine synthesis 

in macrophages [51,52]. 

Tryptophan and indole derivatives  

Gut micribiota such as Clostridium spp., Bacteroides spp. and Escherichia 

coli metabolize dietary tryptophan into indole and indole derivatives (53). 

Indole derivatives include indole acrylic acid, indole-3-aldehyde, indole-

3-propionic acid, indole-3-acetic acid, and indole-3-acetaldehyde. 

Tryptophan metabolites function as bacterial quorum sensors to 

communicate with bacteria and their host. Besides, tryptophan 

metabolites mediate the host’s intracellular signaling via binding to aryl 

hydrocarbon receptor (AhR), pregnane X receptor and retinoid-related 

orphan receptor gamma-t [54,55].  

Tryptophan metabolites’ signaling through AHR impact on the intestinal 

homeostasis by modulating immune responses through acting on Th17 

cells, macrophages, dendritic cells, and neutrophils and also decrease the 

pathogen colonization [56,57]. AhR signaling, primarily on immune cells, 

promotes the expression of interleukin-22 (IL-22), which maintains gut 

barrier integrity through promoting mucosal wound-healing and the 

expression of antimicrobial peptides (AMPs) by intestinal epithelial cells 

[57].  

Choline metabolites 

Trimethylamine (TMA) is a byproduct generated by the gut microbiota, 

such as Bifidobacterium, Firmicutes, Proteobacteria, Actinobacteria, 

Faecalibacterium prausnitzii from dietary amines such as choline, betaine, 

and carnitine that originate from animal-based foods by the action of 

hepatic flavin-containing monooxygenases (FMOs) such as FMO1 and 

FMO3 [33,58,59]. TMA is absorbed into the portal circulation and is 

oxidized by the liver into trimethylamine-N-oxide (TMAO) [59,60]. 

TMAO has been shown to display pro-inflammatory, pro-atherogenic, 

and pro-thrombotic properties [61–65].  For example, it was reported that 

increased levels of TMAO promote oxidative stress and inflammation of 

endothelial cells, activate the inflammasome and inflammatory signaling 

in vascular smooth muscle cells, promote the transformation of 

macrophages into foam cells, promotes platelet hyperreactivity, and alters 

cholesterol transport and bile acid synthesis [66]. TMAO may promote 

the pathogenesis of IBD by impacting autophagy and activating NLRP3 

inflammasome [67]. 

Polyphenolic derivatives 

Dietary polyphenols are metabolized by the gut microbiota such as 

Bifidobacterium, Lactobacillus, C. difficile, F. prausnitzii, to bioactive 

metabolites including urolithins (Uro A,B,C,D, and iso-urolithin A) 

[33,68,69]. UroA enhances gut barrier integrity through upregulation of 

TJ proteins [70]. Treatment with UroA alliviates colitis in mice through 

enhancing gut barrier function and supressing the production of pro-

inflammatory cytokines [70].  

Conclusion and future perspectives 

The current mini review postulates a summary about the role of gut 

microbiome metabolites in the maintenance of the intestinal homeostasis 

through regulating the intestinal epithelial integrity, gut microbiota 

composition, epithelial proliferation, and intestinal immune homeostasis 

(Figure. 1). Metagenomic research on gut microbiota from IBD patients 

have revealed that gut microbiota actively interacts with IECs for the 

regulation of barrier integrity. Moreover, IBD patients is characterized by 

gut dysbiosis, which is associated with impaired intestinal barrier and 

aberrant immune activation. Better understanding of host-gut microbiome 

interaction will eventually become a valuable tool for harnessing the 

power of microbial metabolites to restore gut barrier integrity, and can 

reveal advanced therapeutics not only for intestinal inflammation, but also 

for other immune- and metabolic-related disorders. 
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Figure 1. The role of gut microbiota metabolites in the regulation of intestinal homeostasis. Please explain the figure in the legend.  

Environmental factors such as antibiotics and changes of the diet affect 

the balance of gut microbiota metabolites. Effects of beneficial (left) and 

detrimental (right) gut microbiota metabolites on intestinal homeostasis 

and inflammation.   
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