

# **Clinical Medical Reviews and Reports**

Cruz García Lirios \*

**Open Access** 

Research Article

# Expectations of social rehabilitation in a penitentiary in central Mexico

Cruz García Lirios <sup>1\*</sup>, Oscar Coronado Rincón<sup>2</sup>, María del Rosario Molina González<sup>3</sup>, Adriana Vanessa Blannes Ugarte<sup>4</sup>, Eyder Bolivar Mojica<sup>4</sup>

<sup>1</sup>Universidad del Estado, Huehuetoca, México

<sup>2</sup>Universidad de la Salud, CDMX, México

<sup>3</sup>Universidad de Sonora, Navojoa, México

<sup>4</sup>Universidad Autónoma Latina, Colombia

\*Corresponding Author: Cruz García Lirios, Riggs Pharmaceuticals, Department of Pharmacy, University of Karachi.

Received Date: May 27, 2024; Accepted Date: June 05, 2024; Published Date: June 14, 2024

**Citation:** Cruz G. Lirios, Oscar C. Rincón, María Del Rosario Molina González, Blannes Ugarte AV, Eyder B. Mojica, (2024), Hypertension in Acute Intracerebral Haemorrhage and Ischaemic Stroke: When and When not to Treat., *Clinical Medical Reviews and Reports*, 6(5); **DOI:**10.31579/2690-8794/215

Copyright: © 2024, Cruz García Lirios. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## **Abstract**

Often, social rehabilitation has been considered as a security policy that distinguishes the post-bureaucratic State from its predecessor, considering that crime is inherent in learning that, if reversed, could result in rehabilitation, pre-release and reintegration of private individuals. of his freedom. In this regard, the objective of this paper was to specify a model for the study of social readaptation expectations, considering them a central axis of the punitive strategy. A non-experimental work was carried out with a non-probabilistic sample selection of 100 inmates, considering their confinement in a penitentiary system of training for early release in different modalities and instances. From a structural model  $\begin{bmatrix} X & 2 = 445.34 & (44df) & p = 0.007 & GFI = 0.990 & CFI = 0.995 & RMSEA = 0.008 \end{bmatrix}$  only 34% of the total variance of the construct was explained, which suggests the exploration of more indicators and their correlation with other variables alluding to the prevention of crime or the promotion of violence-free relations.

**Keywords:** Governance; safety; retrofitting; testing; adjustment

## Introduction

The objective of this work is the specification of a model of dependency relationships between the variables that the state of knowledge has associated with respect to public policies, penitentiary services and expectations of inmates deprived of their liberty. In this context, the reliability and validity of an instrument that measured expectations of social rehabilitation in prisons in central Mexico was established. The article is part of the discipline of Social Work, an area of security studies, but includes concepts derived from cognitive psychology such as expectations and from the sociology of violence such as risks [7]. In this way, the notion of expectations is linked to the perception of risks since its gestation is assumed in a scenario of uncertainty where decision-making is made based on the possible benefits without considering the probabilities of risk [11]. Prospective decision theory considers expectations as determinants of risk decisions. This is the case of those who prefer to risk losing their profits by considering low risks instead of ensuring a minimum profit [11]. This is how social readaptation will be considered by the theory of prospective decisions as a scenario of minimal gains since: 1) it entails minimal risks when following an addiction rehabilitation protocol that does not correspond to great benefits such as the freedom to commit a crime.; 2) implies a minimum safe gain crystallized in freedom in the long term or in the medium term if it is anticipated, but insignificant compared to impunity or collusion to continue committing crimes [11]. In such a context of social readaptation based on prospective decisions, institutional security actors and inmates deprived of their liberty consolidate a punitive system of administration of justice [11]. This is a scenario in which social readaptation is directed towards governance. That is, the differences between rulers and the governed tend to dilute to the extent that citizens are participatory, orienting themselves towards the comanagement of early release and social reintegration [2]. Precisely, studies related to social rehabilitation place it as a mediating factor between civil security demands and state justice enforcement instruments [7]. Such a relationship can be inferred and established from the expectations of its actors. In this sense, inmates deprived of their liberty, security guards and administrative technicians share representations of security that are oriented towards readaptation indicated by adherence to the treatment of diseases, rehabilitation for addictions, job training, early release. and social reintegration [5]. It is these representations that generate expectations of aversion or propensity to the social readaptation system [12]. Studies on the subject warn that the relationship between security administration and the expectations of its actors is mediated by factors such as arbitration or conciliation, as well as determined by peace management.

**Formulation**: Will the theoretical and empirical frameworks reviewed in the literature explain the expectations of social readaptation of a penitentiary in central Mexico?

**Hypothesis**: The theory of prospective decisions and the findings reported in the literature suggest that social readaptation is the product of conflict mediation, arbitration of differences and conciliatory negotiation in which expectations reflect, explain and anticipate possible scenarios. management and/or administration of violence or pacification [19]. The specification of social readaptation in the study penitentiary suggests the inclusion of other factors not included in the literature, such as early release or social reintegration, which would reliably explain the generality and particularity of social readaptation in a state institution.

### **Method**

In the first study, a review of the literature was carried out with the purpose of establishing the central themes of the social rehabilitation agenda and its effects on the availability of resources and management of penitentiary services. In relation to the cited literature, there are lines of research related to helplessness and farsightedness as explanatory factors of the impact of rehabilitation and addiction treatment on the users' dispositions regarding human rights, early release and labor reintegration. In the second study, a

non-experimental, cross-sectional and exploratory study was carried out. A non-probabilistic selection of 100 inmates from the Social Rehabilitation Center (Cevareso) was carried out. The Carreon Social Readaptation Expectations Scale (2016) was used, which includes eight items related to negotiation, mediation, conciliation and arbitration regarding addiction treatment, early release and labor reintegration. The Delphi technique was used to homogenize the meanings of the words included in the items. Inmates were surveyed at the Cevareso facilities, social work area, with prior written guarantee of confidentiality and anonymity, as well as information concerning the null effect of the responses on the inmate's prison status. The information was processed in the Statistical Package for Social Sciences (SPPSS version 14). Measures of central tendency and dispersion, reliability and validity were estimated with the parameters of Crombach 's Alpha, Kayser Meyer Olkin , Barttlet test, chi square, goodness of fit and residual.

#### Results

The statistical properties of the instrument in which it is possible to observe a normal distribution (Mardia: 31), followed by adecuation to sample (KMO = 0.500) (see Table 1). Include sufficient internal consistency (Croanbach's alpha with 0.783), but with a moderate percentage of the total variance explained.

| Table 1. Kaiser-M | eyer-Olkin Test |
|-------------------|-----------------|
|                   | MSA             |
| Overall MSA       | 0.500           |
| r1                | 0.500           |
| r2                | 0.500           |
| r3                | 0.500           |
| r4                | 0.500           |
| r5                | 0.500           |
| r6                | 0.500           |
| r7                | 0.500           |
| r8                | 0.500           |
| r9                | 0.500           |
| r10               | 0.500           |
| r11               | 0.500           |
| r12               | 0.500           |
| r13               | 0.500           |
| r14               | 0.500           |
| r15               | 0.500           |
| r16               | 0.500           |
| r17               | 0.500           |
| r18               | 0.500           |
| r19               | 0.500           |
| r20               | 0.500           |
| r21               | 0.500           |
| r22               | 0.500           |
| r23               | 0.500           |
| r24               | 0.500           |
| r25               | 0.500           |
| r26               | 0.500           |
| r27               | 0.500           |
| r28               | 0.500           |
| r29               | 0.500           |
| r30               | 0.500           |
| r31               | 0.500           |
| r32               | 0.500           |
| r33               | 0.500           |

| Table 1. Kaiser-Meyer-Olkin Tes |       |  |  |
|---------------------------------|-------|--|--|
|                                 | MSA   |  |  |
| r34                             | 0.500 |  |  |
| r35                             | 0.500 |  |  |
| r36                             | 0.500 |  |  |
| r37                             | 0.500 |  |  |
| r38                             | 0.500 |  |  |
| r39                             | 0.500 |  |  |
| r40                             | 0.500 |  |  |

Six factors were established, its factor structure was estimated, considering the trajectories of dependency relationships between the factor and the indicators. First factor include the items 25, 34, 11, 5, 9, 8, 10, 6 and 39.

|     | 3, 34, 11, 3, 9, 8, 10, 0 and 39.                                                         |          |            |          |            |        |              |  |
|-----|-------------------------------------------------------------------------------------------|----------|------------|----------|------------|--------|--------------|--|
| Tat | Table 2. Factor Loadings Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Uniqueness |          |            |          |            |        |              |  |
|     | 1                                                                                         | Factor 2 | 2 Factor 3 | Factor   | 4 Factor 5 | Factor | <del> </del> |  |
| r3  | -0.848                                                                                    |          |            |          |            |        | 0.079        |  |
| -   | 0.842                                                                                     |          | -          |          |            | -0.462 | 0.056        |  |
|     | 0.842                                                                                     |          | <b> </b>   |          |            | -0.462 | 0.056        |  |
| r4  | -0.821                                                                                    |          | <b> </b>   |          |            |        | 0.219        |  |
| -   | -0.772                                                                                    |          |            |          |            |        | 0.317        |  |
|     | 0.769                                                                                     |          |            |          |            |        | 0.204        |  |
| -   | 0.765                                                                                     |          |            |          |            |        | 0.263        |  |
|     | -0.749                                                                                    |          | <b> </b>   |          | ļ.         |        | 0.356        |  |
|     | -0.719                                                                                    |          |            |          |            |        | 0.293        |  |
| r21 | -0.719                                                                                    |          |            |          |            |        | 0.293        |  |
| r1  | -0.715                                                                                    | -0.468   |            |          |            |        | 0.231        |  |
| r14 | -0.654                                                                                    |          |            |          |            |        | 0.277        |  |
| r9  | 0.609                                                                                     | 0.598    |            |          |            |        | 0.076        |  |
| r8  | 0.579                                                                                     |          | -0.505     |          |            |        | 0.083        |  |
| r10 | 0.560                                                                                     |          | -0.623     |          |            |        | 0.080        |  |
| r6  | 0.448                                                                                     |          | -0.467     |          |            |        | 0.200        |  |
| r39 | 0.443                                                                                     | 0.654    | 0.402      |          |            |        | 0.087        |  |
| r7  |                                                                                           | 0.829    |            |          |            | 0.408  | 0.301        |  |
| r31 |                                                                                           | 0.828    |            |          |            |        | 0.184        |  |
| r22 |                                                                                           | 0.828    | 1          |          | l          | İ      | 0.184        |  |
| r16 |                                                                                           | -0.794   | 1          |          | l          | İ      | 0.320        |  |
| r40 |                                                                                           | 0.740    |            |          |            | ĺ      | 0.270        |  |
| r18 |                                                                                           | -0.580   |            |          |            | ĺ      | 0.186        |  |
| r17 |                                                                                           | -0.464   |            |          |            |        | 0.227        |  |
| r15 |                                                                                           | 0.410    |            |          |            | ĺ      | 0.337        |  |
| r28 |                                                                                           |          | 0.941      |          |            | ĺ      | 0.096        |  |
| r37 |                                                                                           |          | 0.941      |          |            |        | 0.096        |  |
| r2  |                                                                                           |          | -0.707     |          | -0.427     |        | 0.233        |  |
| r36 |                                                                                           |          | 0.638      |          |            |        | 0.381        |  |
| r27 | 1                                                                                         |          | 0.638      |          | l          | ll .   | 0.381        |  |
| r35 |                                                                                           |          |            | 1.009    | 1          |        | 0.028        |  |
| r26 |                                                                                           |          | #          | 1.009    |            |        | 0.028        |  |
| r19 |                                                                                           |          | <b> </b>   | 0.778    | 1          |        | 0.119        |  |
| r23 | <u> </u>                                                                                  |          | <b>†</b>   |          | 0.951      |        | 0.140        |  |
| r32 | <u> </u>                                                                                  |          | <b>†</b>   |          | 0.951      |        | 0.140        |  |
| r29 |                                                                                           |          | 1          |          | 0.762      |        | 0.296        |  |
| r38 | <u> </u>                                                                                  |          | <b>†</b>   |          | 0.543      |        | 0.564        |  |
| r33 |                                                                                           |          | 1          |          | 0.0.10     | 0.884  | 0.125        |  |
| r24 | <u> </u>                                                                                  |          | #          |          | 1          | 0.884  | 0.125        |  |
| r12 |                                                                                           |          | #          |          |            | 0.749  | 0.438        |  |
| 114 | <u> </u>                                                                                  | <u> </u> | <u>II</u>  | <u> </u> | Ш          | U.747  | 0.450        |  |

| Tal | Table 2. Factor Loadings                 |          |          |          |          |          |            |
|-----|------------------------------------------|----------|----------|----------|----------|----------|------------|
|     | Factor 1                                 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | Uniqueness |
| Not | Note. Applied rotation method is promax. |          |          |          |          |          |            |

Extraction method: main axes, promax rotation. Adequacy and sphericity  $[X]^2 = 34.21$  (32df) p = 0.000; KMO = 0.703. Principal factor (25% of the total variance explained), second factor (27% total variance explained) and third factor (12% total variance explained). All factor 65% total variance explained (see Table 3).

|          | Table 3. Factor Characteristics |                 |                 |            |                  |                 |            |  |
|----------|---------------------------------|-----------------|-----------------|------------|------------------|-----------------|------------|--|
|          |                                 | Unr             | otated solution |            | Rotated solution |                 |            |  |
|          | Eigenvalues                     | SumSq. Loadings | Proportion var. | Cumulative | SumSq. Loadings  | Proportion var. | Cumulative |  |
| Factor 1 | 10.270                          | 10.086          | 0.252           | 0.252      | 9.205            | 0.230           | 0.230      |  |
| Factor 2 | 7.219                           | 7.028           | 0.176           | 0.428      | 6.090            | 0.152           | 0.382      |  |
| Factor 3 | 5.217                           | 5.044           | 0.126           | 0.554      | 5.039            | 0.126           | 0.508      |  |
| Factor 4 | 4.275                           | 4.045           | 0.101           | 0.655      | 3.992            | 0.100           | 0.608      |  |
| Factor 5 | 3.649                           | 3.436           | 0.086           | 0.741      | 3.988            | 0.100           | 0.708      |  |
| Factor 6 | 2.181                           | 1.991           | 0.050           | 0.791      | 3.317            | 0.083           | 0.791      |  |

The model includes direct, positive and significant relationships between the social readaptation expectations factors. Six factors established in the exploratory factor analysis of principal axes with promax rotation (see Table 4).

| Table 4. | Table 4. Factor Correlations |          |          |          |          |          |  |
|----------|------------------------------|----------|----------|----------|----------|----------|--|
|          | Factor 1                     | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |  |
| Factor 1 | 1.000                        | 0.068    | 0.021    | -0.198   | 0.187    | 0.045    |  |
| Factor 2 | 0.068                        | 1.000    | 0.200    | -0.047   | -0.208   | -0.203   |  |
| Factor 3 | 0.021                        | 0.200    | 1.000    | 0.193    | -0.260   | -0.088   |  |
| Factor 4 | -0.198                       | -0.047   | 0.193    | 1.000    | 0.009    | -0.293   |  |
| Factor 5 | 0.187                        | -0.208   | -0.260   | 0.009    | 1.000    | 0.123    |  |
| Factor 6 | 0.045                        | -0.203   | -0.088   | -0.293   | 0.123    | 1.000    |  |

The adjustment and residual parameters  $[X^2 = 445.34 (44df) p = 0.007;$  GFI = 0.990; CFI = 0.995; RMSEA = 0.008] suggest the acceptance of the null hypothesis which indicates a correspondence between the theoretical explanations and the empirical demonstrations with respect to

the observations made in the present work. Parallel analysis suggest six factors, perhaps only four to requirements more than 1% total variance explained (see Table 5).

| Table 5. P | ble 5. Parallel Analysis       |    |                               |     |  |  |
|------------|--------------------------------|----|-------------------------------|-----|--|--|
|            | Real data component eigenvalue | es | Simulated data mean eigenvalu | ies |  |  |
| Factor 1*  | 10.270                         |    | 2.488                         |     |  |  |
| Factor 2*  | 7.219                          |    | 2.266                         |     |  |  |
| Factor 3*  | 5.217                          |    | 2.110                         |     |  |  |
| Factor 4*  | 4.275                          |    | 2.013                         |     |  |  |
| Factor 5*  | 3.649                          |    | 1.902                         |     |  |  |
| Factor 6*  | 2.181                          |    | 1.807                         |     |  |  |
| Factor 7   | 1.610                          |    | 1.720                         |     |  |  |
| Factor 8   | 0.952                          |    | 1.626                         |     |  |  |
| Factor 9   | 0.762                          |    | 1.551                         |     |  |  |
| Factor 10  | 0.652                          |    | 1.481                         |     |  |  |
| Factor 11  | 0.456                          |    | 1.413                         |     |  |  |
| Factor 12  | 0.423                          |    | 1.349                         |     |  |  |
| Factor 13  | 0.355                          |    | 1.296                         |     |  |  |
| Factor 14  | 0.282                          |    | 1.226                         |     |  |  |
| Factor 15  | 0.221                          |    | 1.159                         |     |  |  |
| Factor 16  | 0.214                          |    | 1.101                         |     |  |  |
| Factor 17  | 0.186                          |    | 1.047                         |     |  |  |
| Factor 18  | 0.174                          |    | 0.990                         |     |  |  |
| Factor 19  | 0.150                          |    | 0.939                         |     |  |  |
| Factor 20  | 0.133                          |    | 0.894                         |     |  |  |

| Table 5. Parallel Analysis |                                   |                                    |  |  |  |
|----------------------------|-----------------------------------|------------------------------------|--|--|--|
|                            | Real data component eigenvalues   | Simulated data mean eigenvalues    |  |  |  |
| Factor 21                  | 0.118                             | 0.847                              |  |  |  |
| Factor 22                  | 0.093                             | 0.798                              |  |  |  |
| Factor 23                  | 0.070                             | 0.762                              |  |  |  |
| Factor 24                  | 0.067                             | 0.711                              |  |  |  |
| Factor 25                  | 0.060                             | 0.666                              |  |  |  |
| Factor 26                  | 0.053                             | 0.631                              |  |  |  |
| Factor 27                  | 0.040                             | 0.593                              |  |  |  |
| Factor 28                  | 0.036                             | 0.557                              |  |  |  |
| Factor 29                  | 0.029                             | 0.520                              |  |  |  |
| Factor 30                  | 0.023                             | 0.488                              |  |  |  |
| Factor 31                  | 0.018                             | 0.456                              |  |  |  |
| Factor 32                  | 0.013                             | 0.418                              |  |  |  |
| Factor 33                  | 0.000                             | 0.387                              |  |  |  |
| Factor 34                  | 0.000                             | 0.351                              |  |  |  |
| Factor 35                  | 0.000                             | 0.321                              |  |  |  |
| Factor 36                  | 0.000                             | 0.285                              |  |  |  |
| Factor 37                  | -0.000                            | 0.254                              |  |  |  |
| Factor 38                  | -0.000                            | 0.224                              |  |  |  |
| Factor 39                  | -0.000                            | 0.193                              |  |  |  |
| Factor 40                  | -0.000                            | 0.161                              |  |  |  |
| Note. '*' =                | Factor should be retained. Result | s from PC-based parallel analysis. |  |  |  |

## **Discussion**

The contribution of this work to the state of the art lies in the specification of a model for the study of expectations of social readaptation in inmates of a penitentiary in central Mexico, but the type of non-experimental study and the type of sample selection are not Probabilistic analysis limits the results of the work to the study sample, as well as the type of exploratory analysis and the percentage of the total variance explained suggest the inclusion of other indicators related to domiciliary freedom or pre-release regulated by an identifier. The role of the media in the rehabilitation of people in prisons has been a topic of interest in recent literature [17]. The importance of the media in the reintegration of people deprived of liberty is analyzed, highlighting its dual function as a tool for reintegration efforts, access to information and entertainment, as well as a source of truthful and objective information about internal realities, penitentiary institutions [18]. This reflects the legal framework for the comprehensive rehabilitation of convicted persons [14]. The transformation of correctional institutions into rehabilitation centers has been a focus of attention [15]. This shift toward rehabilitation is also evident in the systematic review of literature on alternative offender rehabilitation programs, such as yoga, mindfulness, and meditation in prison, which have shown promising results in promoting rehabilitation [9]. Rehabilitation programs within prisons play a crucial role in reintegrating people into society [10]. Effective prison rehabilitation programs, including education and substance use disorder treatment, have been shown to be beneficial when well designed and implemented [13]. Additionally, they provide unique learning experiences for both incarcerated individuals and day students, promoting education and rehabilitation [3]. Additionally, specialized programs such as gang rehabilitation aim to help people abandon their gang affiliation through religious interventions and tattoo removal services [16]. In conclusion, the literature on rehabilitation in prisons highlights the importance of media, personalized programs and alternative approaches to promote the reintegration of individuals into society. These efforts reflect a shift toward rehabilitation-focused initiatives in correctional systems, emphasizing the need for comprehensive and effective rehabilitation programs to support individuals on their path to successful reintegration.

Pre-release programs and strategies even though it has been shown that crime prevention is less costly, formative and indicative, but in the present work it has been found that the percentage of the explained variance could increase with the correlation between crime prevention and the promotion of violence-free relationships with respect to early release and social reintegration. However, some other studies affirm that social readaptation would also be influenced by civil distrust of the authorities regarding their level of corruption, nepotism, opacity, negligence, extortion or collusion with organized crime, as well as the perception that Social rehabilitation institutes are trainers of crime. In the present work, it has been observed that the expectations of social readaptation are not only based on rehabilitation, pre-release and reintegration, but also a high percentage of unexplained variance is evident that could be explained by variables such as expectations of corruption, including crimes such as negligence, opacity, nepotism, extortion or collusion. It is necessary to contrast the specified model in contexts, scenarios and samples related to public security and institutions to adjust their dependency relationships and calibrate possible correlations with other factors and indicators limited to the institutional phenomenon of social readaptation, in this case. framework understood as a public security administration strategy whose effects are observed in the expectations of inmates, but also in the expectations of administrative and security technicians. The extension of the study to samples of administrative and security technicians would contribute to the study of social rehabilitation as a distinctive institutional seal of the governing State in charge of the procurement and administration of justice rather than crime prevention and the promotion of relationships free of violence.

## **Conclusion**

The objective of this work was to specify a model of trajectories of dependency relationships between the social readaptation expectations factor with respect to indicators related to rehabilitation, pre -release and social reintegration, although the percentage of total variance explained warns of the inclusion of other indicators that could link the construct with other variables such as civil distrust towards authorities and perceptions

of risk around corruption. In this sense, it is advisable to contrast the model to calibrate some correlations between the factors and indicators.

### References

- Carreon, J. (2016). Insecurity and violence in the printed media of Mexico. Effects on the perception of civil spheres. In L. Cano. (coord). Contributions on current problems from research in Social Work (pp. 55-140).
- Carreón, J., García, C., Vilchis, FJ, Martínez, J., Sánchez, R. and Quintana, L. (2016). Reliability and validity of an instrument that measures seven dimensions of security perception in students at a public university. *Thinking Psychology*, 12 (20).
- Cullen, F. T., & Smith, P. (2011). Treatment and rehabilitation. In *The Oxford handbook of crime and criminal justice* (pp. 156-178). Nueva York: Oxford University Press.
- García, C. Carreon, J. and Hernández, J. (2016). Governance of terror of crime. Eureka, 13 (2), 168-185
- García, C., Bustos, JM, Carreón, J. and Hernández, J. (2018).
   Specification of a model for the study of expectations from its mediating function. *Teaching and Research in Psychology*, 23 (1), 75-81
- García, C., Carreon, J. and Hernández, J. (2016). Governance of public security based on identity and risk perception established in the citizen agenda by the media. *Directions*, 11 (13), 103-116
- García, C., Carreon, J. and Hernández, J. (2017). Comanagement as a security device for local development. *Eureka*, 14 (2), 268-289
- García, C., Carreón, J., Hernández, J. and Bustos, JM (2017). Institutionalist power and civil influence in the mediation of social work in the face of social policies and needs. *Criticism & Resistance*, 14 250-264

- Hamsir, H., Zainuddin, Z., & Abdain, A. (2019). Implementation of Rehabilitation System of Prisoner for the Prisoner Resocialization in the Correctional Institution Class II A Palopo. *Jurnal Dinamika Hukum*, 19(1), 112-132.
- Łuczak, E. (2020). The process of penitentiary rehabilitation in the experiences of former convicts. *Resocjalizacja Polska*, 20(1), 173-185.
- Mejía, S., Carreon, J. and García, C. (2016). Psychological effects of violence and insecurity in older adults. *Eureka*, 13 (1), 39-55
- Mendoza, D., Carreón, J., Mejía, S. and García, C. (2017).
   Specification of a model of propaganda representations in older adults in the face of public insecurity. *Tlatemoani*, 25, 21-30
- Mertl, J. (2023). Rehabilitation vs. Retribution/Repression: An Introduction to Systemic Contradictions in the Czech Penitentiary System. In *Human Rights Protection and Ius Puniendi: Perspectives from Central East Europe and Latin American Countries* (pp. 47-63). Cham: Springer Nature Switzerland.
- Mróz, B. (2020). American Penitentiary System; Punishment or Rehabilitation.
- Mukasheva, D., Tulkinbayev, N., Prilutskaya, M., Yessimova, D., & Stöver, H. (2024). Behind bars: Understanding prisoner perception of penitentiary rehabilitation in Kazakhstan. *International Journal of Law, Crime and Justice*, 77, 100669.
- Phelps, M. S. (2011). Rehabilitation in the punitive era: The gap between rhetoric and reality in US prison programs. *Law & society review*, 45(1), 33-68.
- 17. Rubin, E. L. (2001). The inevitability of rehabilitation. *Law & Ineq.*, 19, 343.
- 18. Shichor, D. (1992). Following the penological pendulum: The survival of rehabilitation. *Fed. Probation*, *56*, 19.
- Westover, H. C. (1958). Is prison rehabilitation successful. Fed. Probation, 22, 3.



This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here:

**Submit Manuscript** 

DOI: 10.31579/2690-8794/215

## Ready to submit your research? Choose Auctores and benefit from:

- ► fast, convenient online submission
- > rigorous peer review by experienced research in your field
- > rapid publication on acceptance
- > authors retain copyrights
- > unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <a href="https://auctoresonline.org/journals/clinical-medical-reviews-and-reports-">https://auctoresonline.org/journals/clinical-medical-reviews-and-reports-</a>