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Abstract: 

Long COVID syndrome, known as Long COVID, refers to a series of debilitating symptoms that arise after infection with 

the SARS-CoV-2 virus. These symptoms are similar to those experienced by some people after vaccination with vaccines 

based on mRNA platforms (Pfizer, Moderna). With more than 200 million Long COVID patients worldwide and an 

increase in cases of moderate to severe reactions after administration of mRNA vaccines (VSITV), the effects on quality 

of life and economics are significant, for what is necessary to pay urgent attention to understand its pathophysiology and 

to provide an adequate diagnosis and treatment. 

In this article, we describe our perspective that both Long COVID and common side effects of mRNA vaccines (VSITV) 

induce persistent and prolonged expression of the spike protein (SPIKE) in various tissues and organs of the body. This 

would induce coagulopathy, microscopic vasculitis, and endothelitis as the main drivers of the disease, and may also cause 

or worsen other common pathologies in Long COVID, such as mast cell activation syndrome, dysautonomia, and sudden 

deaths due to arrhythmias and heart attacks, reports of which continue to rise. 

Given that the SARS-CoV-2 spike protein can independently induce fibrinoid microclot formation, platelet activation, and 

endothelitis, we predict that the persistence of the spike protein will be a key mechanism driving ongoing coagulopathy in 

Long COVID and in the VSITV. We discuss various treatment goals to address coagulopathy, endothelitis, and vasculitis 

and predict that treatment, especially if given early, with a combination of anticoagulants, antiplatelets, corticosteroids, and 

rapamycin/everolimus, will provide significant relief for many patients. 

To focus attention on these treatment targets, we propose that the term Long COVID be changed to "natural Spike Protein-

Induced Thrombotic Vasculitis" (NSITV) and that serious side effects of mRNA vaccines be renamed "Vaccine Spike 

Protein - Induced Thrombotic Vasculitis" (VSITV). Are mainly due to a persistent and disseminated cellular expression of 

the Spike protein". These ideas require urgent testing, especially as the world tries to live with COVID-19. 
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Introduction 
Long COVID (or the post-acute sequelae of COVID-19) is a debilitating 

multisystem disease that causes significant disability [1]. The World 

Health Organization [2] has defined Long COVID as those cases in which 

a probable or confirmed infection by SARS-CoV-2 occurs, with onset of 

symptoms within three months, a duration of at least two months and no 

alternative diagnosis. It is estimated that Long COVID affects more than 

200 million people worldwide, with most cases considered "mild" [3,4] 

and even a third of them are asymptomatic [5,6]. In addition, a significant 

increase in the presentation of prolonged COVID-19-like symptoms 

(VSITV) has been observed after SARSCoV-2 vaccination, especially 

with mRNA- based vaccines [7–11]. 

Patients with Long COVID experience on average 56 symptoms affecting 

nine different body systems [1], the most common being fatigue, 

cognitive dysfunction, dyspnea, exercise intolerance, exacerbation of 

symptoms after exertion (PESE), sleep disorders and myalgias [1,3,12–

14]. Given this broad definition, Long COVID is likely to be a 

multipathology disease [10–12]. 

Estimates of the long-term prevalence of COVID-19 vary [3,13,18,19], 

but studies in Scotland have shown that it affects 1.8-3.2% of the 
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population [20,21], in compared with cancer (2.5%), chronic kidney 

disease (3.2%), chronic obstructive pulmonary disease (2.3%), and stroke 

(2.2%) [22]. Two meta-analyses have shown persistent symptoms in 43-

45% of patients after the acute phase of COVID-19 [3,13]. Follow-up 

studies suggest that 85% of patients presenting with symptoms two 

months after infection remain symptomatic at one year [23]. Similarly, 

resolution of symptoms after 90 days appears to be rare [24], leading to 

disability in a previously economically active population [1]. 

Consequently, the economic costs are estimated to be as high as $25 

billion in the UK alone [25]. 

In addition to its modest benefits in acute cases of COVID-19, vaccination 

provides a modest reduction in the odds of developing Long COVID 

(13% and 9% reduction after the first and second doses, respectively 

[26]). However, other investigations have shown that each SARS-CoV-2 

reinfection increases the risk of death, hospitalization, and/or multi-organ 

complications, regardless of vaccination status [27]. Therefore, the 

protections provided by vaccination appear to be far from absolute, 

especially when many public health measures are being scaled back in 

various countries [28–30]. As a result, the prevalence of Long COVID 

continues to increase [31]. In addition, both the severity and type of side 

reactions to mRNA-based vaccines are increasing, as is the diversity of 

clinical manifestations and affected organs, from sudden death in healthy 

young people, including athletes, to myocarditis, endomyocarditis, 

pericarditis, venous and arterial thrombosis, meningoencephalopathies, 

peripheral neuropathies, systemic inflammatory syndromes such as Still's 

disease, gastrointestinal syndromes, and infertility due to orchitis 

(decreased spermatocyte production) or premature ovarian failure due to 

oophoritis. The list of tissues and organs affected so far is extensive (you 

can review the report "The Frequency and Associations of Adverse 

Reactions of COVID-19 Vaccines Reported to Pharmacovigilance 

Systems in the European Union and the United States. Supplementary 

file"). 

It is therefore evident that the majority of Long COVID and VSITV cases 

do not resolve over time, and their prevalence continues to rise, carrying 

significant economic costs for a previously productive workforce. 

Therefore, understanding the pathophysiology of Long COVID and 

VSITV is imperative, and treatments must be urgently implemented. 

Vaccines based on mRNA platforms: the foundations that support 

VSITV 

As of this writing, the following is indisputable regarding vaccines 

based on mRNA platforms: 

1. After administration of the vaccine, the mRNA spreads in 

various tissues and cells begin to express the spike protein 

(SPIKE) encoded by the mRNA in different organs and tissues. 

2. The expression of the spike protein in cells can last longer than 

initially reported, reaching months and even years. 

3. The widespread expression and duration of spike protein in 

various organs and tissues cannot be predicted or controlled 

with Pfizer and Moderna mRNA-based vaccines. 

4. Like any foreign protein or antigen expressed in cells, spike 

protein triggers an antibody- and T-lymphocyte- mediated 

immune response that destroys cells producing and expressing 

spike protein, which in turn results in a systemic inflammatory 

process. 

5. Expression of the spike protein encoded by mRNA vaccines in 

endothelial cells renders them susceptible to destruction, 

inflammation, and dysfunction, which can lead to vasculitis and 

coagulopathy characterized by microthrombosis and 

hyperactivation of platelets. These effects may be direct, 

inherent to the abnormal expression of the spike protein in the 

endothelium, or mediated by the immune response induced by 

the spike protein, or both mechanisms. 

6. The specific immune response against the spike protein will 

persist as long as there are cells in the tissues and organs that 

produce it. The longer the spike protein is present, the longer 

the immune-mediated inflammation lasts, resulting in chronic 

damage to the tissues and organs that contain cells that produce 

the spike protein encoded by the mRNA vaccines. 

7. Administration of booster doses of mRNA vaccines will induce 

stronger, faster, and longer immune responses, as well as 

increased spike protein expression in cells, resulting in 

increased risk of destruction and damage to tissues and organs. 

Acute COVID-19: the foundations that support Long COVID-19 

Endothelial cells play vital roles in vascular homeostasis and hemostasis, 

including regulation of vascular tone, blood flow, fibrinolysis, and 

platelet aggregation [32-35]. Acute COVID-19 appears to be primarily a 

disease of the vascular endothelium leading to microcirculatory 

thrombotic vasculitis [33,34,36–43]. SARS-CoV-2 spike proteins allow 

the virus to bind to target cells through binding to angiotensin-converting 

enzyme 2 (ACE2), followed by intracellular viral replication [42,44,45]. 

ACE2 is present in the tongue, nasal mucosa, and lungs as the initial portal 

of entry, and is also found in the vasculature on endothelial cells. This 

gives SARS-CoV-2 ample opportunity to spread easily throughout the 

body, including across the blood- brain barrier [33,34,37,42,46–48]. 

Entry of SARS-CoV-2 into endothelial cells reduces ACE2 expression, 

leading to a proinflammatory and prothrombotic environment [34,49–51].  

Endothelial injury may be the result of direct SARS-CoV-2 infection, 

leading to endothelial cell apoptosis and endothelitis, as well as 

subsequent systemic immuno-inflammatory responses [33,34,37,39,49, 

51,52]. 

Spike proteins change the structure of beta and gamma fibrinogen, 

complement 3, and prothrombin, resulting in the development of blood 

clots that are larger and more difficult to break down. Spike proteins can 

trigger clot formation in the blood even without thrombin and platelets. 

Spike protein alone can cause neuronal damage [53], destabilize 

microvascular haemostasis [54], induce thrombosis [55], (irreversibly) 

activate platelets [56–58] and alter endothelial function [43,59], with 

some effects not dependent on ACE2 [60] or possibly related to anti-spike 

antibodies [61]. Endothelial dysfunction results in impaired vascular tone 

and a prothrombotic state [32,34,35,37,43,49]. 

Post-mortem examination of critically ill patients with COVID-19 has 

revealed the presence of a generalized coagulopathy, with alveolar-

capillary microthrombi nine times more frequent than in influenza A [62]. 

Furthermore, Pretorius et al. [40] found a significant microclot burden in 

acute patients with COVID-19, regardless of disease severity, compared 

with patients with type 2 diabetes and healthy controls. These microclots, 

of an amyloid nature, laid the foundation for the chronic sequelae 

following COVID-19. 

Thrombi are known to develop from inflammation, partly due to platelet 

hyperactivation [63]. COVID-19 is a highly inflammatory disease, with 

the potential to trigger cytokine storms [64]. In fact, COVID-19 activates 

platelets and the complement system, causing endothelial dysfunction 

[43,65]. The resulting pro-inflammatory milieu can lead to a condition 

known as immunothrombosis, which especially affects the 

microvasculature [65]. In addition, the S1 subunit of the SARS-CoV-2 

spike protein can directly interact with platelets and fibrin, causing 

microclot formation [36,56,66–68]. 

Specifically, the S1 subunit produces structural changes in β and γ fibrin 

(gene), complement 3, and prothrombin, resulting in the formation of 

extensive abnormal microclots [36,58,67–70]. These microclots appear to 

pathologically alter blood flow in systemic microcapillaries [36,71–73], 

including the brain [48], heart [73–75], lungs [46,73,76] and kidneys [73]. 

Microclots induced by spike protein are resistant to fibrinolysis, creating 

the potential for false-negative clot dissolving tests (such as D-dimer) [77] 

and making microclots persistent and central to pathogenesis of Long 

COVID and VSITV [36,69,78]. 
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There are several proposed mechanisms that offer valid explanations for 

Long COVID. In many patients, it is possible that several of these 

pathologies coexist and interact with each other. Suggested ideas include 

mast cell activation syndrome (MCAS), neuroinflammation, viral 

reactivation, persistence of SARS-CoV-2 and/or spike protein, 

autoimmunity, and gut dysbiosis [9,79]. 

However, a pathology related to microclots, platelet hyperactivation, and 

endothelial dysfunction is being increasingly recognized [36,40,43,80–

82]. In this sense, our perspective is that Long COVID and VSITV are 

mainly (although not exclusively) a form of thrombotic vasculitis. 

Microclots in Long COVID patients were first described by Pretorius et 

al. [82], who found a persistent presence of fibrinolysis-resistant 

microclots in the blood, accompanied by platelet hyperactivation and 

dysregulated hemostasis disturbance. These microclots were visible 

macroscopically as a pellet in platelet-poor plasma samples after 

centrifugation (not seen in healthy controls or patients with type 2 

diabetes), and levels were comparable to those found in patients with 

acute COVID-19 [82]. 

Clogging of the capillaries 

Normally, human capillaries are 5–10 μm in diameter, allowing red blood 

cells (~8 μm in diameter) to circulate in single file due to their flexible 

structure [83]. However, microclots present in Long COVID patients have 

a diameter of 5 to 200 μm, which means that they can obstruct capillaries 

[82,83]. This can lead to ischemia- reperfusion injury at the microvascular 

level [83], explaining exacerbation of symptoms after physical exertion 

(PESE), which affects 75-89% of patients. PESE is a diagnostic criterion 

for myalgic encephalomyelitis, which can be objectively demonstrated by 

cardiopulmonary exercise tests performed on consecutive days [1,83–87], 

and subsequent recovery is prolonged [88]. 

Microvasculature obstruction also explains other symptoms of Long 

COVID, such as chest pain, which can be caused by microvasculature 

ischemia [89]. Evidence of capillary obstruction has been found in several 

studies of the microvasculature of different organs in patients with Long 

COVID, providing evidence of systemic vascular changes [89–95]. These 

microvascular changes include a reduction in sublingual vascular density 

comparable to that seen in severe cases of acute COVID-19 [93], as well 

as a reduction in retinal vascular density [94,95], presence of fibrin 

thrombi obstructing capillaries in the skin [92] and loss of muscle 

capillaries [90,91]. Biomarkers of tissue hypoxia-induced microvascular 

remodeling, such as vascular endothelial growth factor (VEGF), have 

been found in patients with Long COVID, probably as compensation for 

capillary occlusion [96-98]. However, any new vessels that form will also 

be susceptible to occlusion. Similar compensatory angiogenesis has been 

observed in multiple organs of severely acute patients with COVID-19 

[99]. These findings are compatible with capillary occlusion by 

microclots. 

Similar data have been observed in histopathology studies in patients 

suffering from VSITV, especially microscopic vasculitis and 

microthrombosis in different tissues and organs. In fact, a recent work 

reports the postmortem study of 325 patients who died after 

administration of the mRNA-based vaccines. They found that 53% of 

deaths due to VSITV affected the cardiovascular system, 17% the 

hematological system, 8% the respiratory system, and 7% affected 

multiple organ systems. Three or more systems were affected in 21 cases. 

A total of 240 deaths were directly adjudicated to vaccination with 

mRNA-based vaccines (103). 

The presence of a coagulopathy in patients with Long COVID goes 

beyond “typical” symptoms and is associated with increased risk of 

cardiovascular disease, such as ischemic heart disease and myocardial 

infarction after acute COVID-19 infection [100–102].  Although this risk 

decreases with time, coagulopathic processes still persist in some people, 

suggesting that this condition is ongoing. Microclots have been found 

even more than 23 months after SARS-CoV-2 infection [82,103-109]. 

In addition, a sustained increase in circulating thrombogenic spike protein 

S1 subunit has been observed in Long COVID patients compared to those 

who have recovered from COVID-19 infection [67,110– 112], which may 

explain the risk continuous thrombosis in some cases. Analysis of 

COVID-19-induced microclots has also revealed the presence of spike 

protein (but not full-length SARS-CoV-2) and inflammatory markers 

within the clots [58,66,113]. Thus, clot dissolution can perpetuate clot 

formation and platelet activation by releasing trapped spike protein and 

inflammatory proteins, creating a vicious cycle [113,114]. Inflammatory 

protein retention/sequestration may also help explain why many patients 

with Long COVID and VSITV may present with "normal" laboratory test 

results. The most common test involves C-reactive proteins, which are 

elevated during inflammation, and may suggest blood clot formation. 

Pretorius’ research found that the insoluble microclots formed in long 

COVID tend to entrap inflammatory markers such as C-reactive proteins. 

Since these markers are no longer dissolved in plasma, when doctors take 

a sample of the plasma solution, the results return as normal. Another 

standard test for blood clots checks D-dimer levels. However, D-dimers 

are only released when blood clots begin to break down. As a result, 

patients who have blood clots but have not yet broken them down may 

frequently yield normal test results. 

Platelet activation and endothelitis 

Platelet hyperactivation and endothelitis are important features 

accompanying microclots in Long COVID and VSITV [43]. Endothelial 

damage markers in Long COVID correlate with increased symptom 

burden and decreased exercise tolerance [103,105,107,109,115–121], 

while hyperactivated platelets amplify and maintain endothelitis [116], 

contributing to the development and maintenance of Long COVID 

[82,104,108,122,123]. Furthermore, Long COVID patients who 

experience more pronounced cognitive deficits show higher levels of 

cerebral hypoperfusion [124] and neuroinflammation [125], with plasma 

inflammatory markers consistent with endothelitis [118,126,127]. Since 

endothelial dysfunction is a precursor to atherosclerosis, complications of 

COVID-19 could manifest in the coming decades [128]. 

Capillary occlusion caused by microclots and endothelitis 

can lead to poor systemic oxygen extraction [43,129– 133]. Long COVID 

patients have higher blood lactate levels at rest and during exercise, 

indicating a lower anaerobic threshold [130]. The reduction in maximal 

oxygen consumption (VO2 max) in Long COVID patients is due to 

peripheral limitation in oxygen delivery due to poor oxygen extraction at 

the capillary level [130-133], rather than physical deconditioning [134]. 

Indeed, poor oxygen extraction has been shown to be associated with 

exercise intolerance in Long COVID patients, along with plasma markers 

indicating endothelitis [133]. 

These findings are radiologically supported by magnetic resonance 

imaging using 129 xenon, which demonstrate impaired pulmonary gas 

transfer in Long COVID patients, attributed to microclots, and correlated 

with decreased exercise tolerance and increased blood desaturation. 

oxygen after physical exertion [136,137]. Ventilation/perfusion scans and 

single photon emission computed tomography (CT) after COVID-19 are 

preferable for evaluating capillary thrombosis and perfusion defects, as 

conventional CT pulmonary angiography may underestimate these 

problems [ 138], even in pediatric cases [139,140]. 

Taken together, these findings support the existence of microclots and 

may help explain the wide variety of symptoms in Long COVID due to 

multiorgan tissue hypoxia [129,131–133,136]. 

Co-pathologies 

Beyond the central problem of tissue hypoxia resulting from thrombotic 

vasculitis, there are other consequences of persistent endothelial 

inflammation. Patients with Long COVID are at significantly elevated 

risk (HR > 80) of dysautonomia [79], and some symptoms, such as 
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postural tachycardia, may be partly explained by coagulopathy, 

particularly early in disease progression [80]. The autonomic nervous 

system innervates the walls of blood vessels to regulate vascular tone [32]. 

Sympathetic and parasympathetic fibers innervate the muscular layer of 

the vessels, while only parasympathetic fibers innervate the endothelial 

layer, making parasympathetic fibers more susceptible to the 

consequences of endothelial inflammation [32]. Nerve ischemia has been 

proposed as an etiology [9]. The resulting dysautonomia, where 

sympathetic function predominates, which is in the moderate to severe 

range in two-thirds of Long COVID patients, is independent of the initial 

severity of the infection [32,141] and is associated with exercise 

intolerance [142]. 

An important consequence of post-COVID- 19 dysautonomia is postural 

orthostatic tachycardia syndrome (POTS) [143]. The etiology of POTS is 

multifactorial, but endothelial disease [144], hyperactive plat e le t s [145 

,146], tissue hypoxia [147], immunethrombosis [146], and increased 

sympathetic activation [144,147–149] have all been implicated. POTS 

causes abnormal cerebral blood flow and oxygenation [150,151] 

consistent with the target organ consequences of thrombotic vasculitis in 

Long COVID and contributes to a variety of common Long COVID 

symptoms (eg, fatigue, tremors, dizziness) [152]. Predominant 

sympathetic activation produces symptoms that can commonly be 

misdiagnosed as anxiety [153-155]. ACE2 downregulation and tissue 

hypoxia can reduce serotonin synthesis [156,157], while overactive 

platelets (which store serotonin) can cause serotonin depletion [113]. 

Therefore, the anxiety and depression present in some patients may be a 

consequence of coagulopathy and dysautonomia [158]. 

More cases of POTS have been observed after SARS- CoV-2 infection 

and vaccination (less frequent) [143,159]. It is increasingly recognized 

(see above, VSITV foundations) that Long COVID symptoms, diagnoses, 

and pathophysiology may also be triggered after SARS-CoV-2 

vaccination in some patients [7,8,10,11] in which the persistence of the 

spike protein has been implicated [7–9]. With the same diseases occurring 

after vaccination and infection, we here suggest that the persistence of the 

spike protein (rather than the whole virus) may lead to Long COVID, 

POTS, and VSITV pathology. Given that the spike protein alone has been 

shown to induce microclotting in vitro [36] and that some of those 

vaccinated with an mRNA-based vaccine develop a thrombotic vasculitis 

similar to that of Long COVID-19, we believe this offers crucial insight 

of the etiology of Long COVID-19 and VSITV. Supporting this, and in 

line with the evidence presented above for Long COVID, several cases of 

post-COVID-19 vaccine retinal vascular occlusion (summarized in [160]) 

have been reported, attributed to Susac syndrome (an autoimmune 

endotheliopathy) and microthrombi, with potential links to hyperviscosity 

syndrome. 

It is true that mast cell activation syndrome (MCAS) appears to play an 

important role in both Long COVID and postural orthostatic tachycardia 

syndrome (POTS). Mast cells, found in the vasculature, are involved in 

inflammation, hemostasis, and endothelial cell activation. Their 

degranulation may contribute to immunological and thrombotic outcomes 

in COVID-19. In turn, platelet activation and ischemia-reperfusion can 

stimulate mast cell degranulation. Several mast cell mediators, such as 

heparin, tryptase, and VEGF, are directly involved in coagulopathy. 

Thus, MCAS may be a direct consequence of persistent coagulopathy, 

even if activation was initiated through spike protein exposure. The 

persistence of the spike protein may be a chronic trigger of MCAS. 

Although MCAS appears to be a co-pathology in some Long COVID 

patients, addressing the coagulopathy could have a dual benefit by 

reducing inappropriate and harmful mast cell activation as well as 

mitigating thrombogenesis. 

Current evidence suggests that both Long COVID and VSITV are mostly 

a coagulopathy and vasculopathy causing multisystem symptoms due to 

systemic tissue hypoxia. The clinical similarity with other coagulopathic 

diseases, such as antiphospholipid syndrome, also supports this idea. 

Thus, it is likely that Long COVID and VSITV are, in many cases, Spike 

protein-induced thrombotic vasculitis (SITV). Therefore, the use of the 

terms NSITV and VSITV is proposed to describe these disorders, as they 

are more descriptive of the proposed mechanism and primary pathology. 

This helps focus attention on early therapeutic interventions to prevent 

chronic complications and also distinguishes these conditions from other 

pathologies that may predominate in some patients. 

Importantly, this proposal is supported by current evidence, but research 

on Long COVID and VSITV is ongoing, and further studies are needed 

to fully understand their pathophysiology and develop effective 

therapeutic approaches. 

Potential treatments 

Therapeutic efforts for Long COVID to date have focused predominantly 

on rehabilitation and psychological therapy [169], perhaps due to the 

impression that Long COVID patients are recovering from acute COVID-

19 rather than suffering a continuing pathology. Taking this pathology 

into account, these treatments can be harmful, due to PESE [1,87,170]. In 

fact, rehabilitation is largely ineffective in improving Long COVID 

symptoms [169]. We maintain that Long COVID patients (those with 

NSITV) will not be ready for rehabilitation until the underlying disease 

and its complications have been effectively treated. 

Treatment targets for NSITV and VSITV are microclots, hyperactive 

platelets, and endothelitis. It is proposed that treatment of this 

multifaceted inflammatory coagulopathy with a single drug will be 

insufficient and a combination of anticoagulant, steroidal anti-

inflammatory, and antiplatelet drugs will be required to achieve 

synergistic and superior results [81,114,156], and early intervention is 

recommended [43,114,156]. 

Anticoagulants 

In acute cases of COVID-19, favorable outcomes have been hypothesized 

and achieved when coagulopathy is addressed [38,171,172], and NICE 

recommends anticoagulants in certain circumstances [173]. In a case 

series of Long COVID patients, early treatment with apixaban 5 mg 

B.I.D. (with aspirin, clopidogrel, and a proton pump inhibitor) for ≥1 

month resulted in symptomatic resolution in 24/24 patients [81]. 

Symptomatic improvement was also correlated with a reduction in 

microclots and hyperactive platelets. Another case series (n=91) of 

anticoagulant/ antiplatelet therapy showed that between 74% and 87% of 

patients reported an improvement in nine key symptoms and a concurrent 

reduction in microclots, but an increase in gastrointestinal bleeding [80]. 

Since Long COVID microclots are resistant to fibrinolysis [36,69,78], 

dabigatran may be superior, as it increases clot susceptibility to 

fibrinolysis more than other anticoagulants [174,175]. Heparin inhibits 

the binding of the ACE2 spike protein, which means that it has antiviral 

and anticoagulant properties [60,176–178]. Heparin has been used to 

effectively treat conditions such as prolonged COVID-related perfusion 

defects [139], as well as microclots in the setting of pulmonary embolism 

[179]. In addition, obstetric patients (n=291) with Long COVID who 

received enoxaparin antepartum through six weeks postpartum reported 

ongoing symptoms of Long COVID less frequently than those who did 

not [180]. 

Antiplatelet drugs 

The targets of antiplatelet therapy are hyperactive platelets and 

endothelitis. Emerging evidence suggests a unique role for P2Y12 

inhibitors (eg, ticagrelor, clopidogrel) that attenuate the interaction 

between platelets and endothelial cells and thus reduce platelet activation, 

endothelitis, and endothelial formation. clots more potently than aspirin 

[58,116]. In hospitalized patients with acute COVID-19, favorable 

outcomes (eg, reduced mortality) have been found with antiplatelet drugs, 

with increased survival being observed with dual antiplatelet therapy 

without increased risk of bleeding [181,182]. Others have found improved 
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perfusion with tirofiban, along with aspirin, clopidogrel, and 

anticoagulants in prophylactic doses [183]. In a randomized controlled 

trial, hospitalized patients receiving aspirin had similar 28-day mortality 

rates (versus standard care), but a slightly shorter hospital stay and a 

higher proportion of patients discharged alive within 28 days. days [184]. 

In Long COVID terms, obstetric patients taking aspirin 325 mg/d reported 

symptomatic improvement compared with those that did not [180]. In a 

case series of 24 Long COVID patients, aspirin was shown to reduce 

hyperactive platelets as a single agent, but required the addition of 

apixaban and clopidogrel to reduce microclots [81]. Similar findings were 

reported in a larger case series (n = 91), which showed reduced platelet 

activation after anticoagulation with dual antiplatelet agents [80]. 

Considering the emerging evidence of Long COVID-like vaccine 

reactions, we note that aspirin has previously been explored as a method 

to reduce vaccine-induced acute endothelitis [185]. 

mTORC1 Inhibitors 

A drug that should be considered is Rapamycin or Everolimus, an 

mTORC1 inhibitor that has excellent anti- inflammatory effects on 

endothelial cells in addition to its immunosuppressive effect that has 

given very good results in Takayasu vasculitis, kidney transplant 

rejections, Grant versus host disease and its use in coronary stents to 

prevent endothelial and myocyte proliferation of the arterial medial layer. 

It is the author's opinion that the most reasonable treatment  for  severe  

NSITV  and  severe/serious  VSITV, taking into account the importance  

of thrombotic vasculitis in its pathogenesis, is made up of: steroidal anti-

inflammatory (Deflazacort doses of 15 to 30 mg / day , prednisolone 10-

20 mg x day), anticoagulant (Apixaban 5-10 mg x day, Dabigatran 110-

150 mg x day, ), antiplatelet drugs (Clopidrogel 75 mg BID x day, 

Ticagrelor 60-90 mg x day) and Rapamycin 1 mg BID x day or 

Everolimus 10 mg x day. In cases of mild to moderate NSITV and 

VSITV, the use of low doses of steroidal anti-inflammatory drugs, 

anticoagulants, and antiplatelet drugs should be considered, and in cases 

in which no improvement is obtained, consider the use of Rapamycin or 

Everolimus. 

Those patients with NSITV and VSITV with symptoms of anxiety and 

depression may benefit from the antidepressant Sertraline; this drug also 

has additional antiplatelet   and   endothelial   protective   properties (188-

193). In addition, sertraline binds to the S1 subunit of the spike protein, 

blocking its interaction with ACE2 [187], which may be important 

considering the growing evidence of persistence of the spike protein in 

NSITV and VSITV. 

Conclusion 

A growing body of evidence supports that NSITV and VSITV i s 

primarily an endothelial and immunocoagulopathic disease initiated by 

SPIKE expression in cells following infection or the use of mRNA 

platform-based vaccines. We propose the use of the term NSITV and 

VSITV as it describes the pathophysiology of post-COVID-19 and post-

vaccination presentations, and helps focus attention on early therapeutic 

intervention targeting microclots, hyperactive platelets, and endothelitis. 

This multifaceted coagulopathy requires synergistic polypharmacy to 

achieve symptomatic resolution. Thromboelastographic can be used to 

mitigate the risk of bleeding. 

Our perspective does not deny the need to find and treat other common 

pathologies in Long COVID and VSITV, but highlights how thrombotic 

vasculitis can cause, exacerbate, and interact with other pathologies. 

Future research should investigate the efficacy of aggressive 

anticoagulation, antiplatelet therapy (particularly early), and the use of 

Rapamycin/Everolimus, after COVID-19 infection or post-mRNA 

vaccine sequelae to treat NSITV and VSITV. 
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