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Introduction 
 

In 1905, the random walk theory was born from K. Pearson's 

publication in the journal Nature. From this starting point, random walk 

theory has become a widely used tool for tackling problems in physics 

(Diniz et al., 2017), Economics (Masoliver et al., 2003), Engineering 

(McCarthy, 1993) (Klages, 2008), Biology and Medicine (Moura et al., 

2018) (Cressoni et al., 2012). 

In 2004, G.M. Schütz and S. Trimper discovered a new class 

of random walks. The class of random walks with memory. This random 

walk class has the feature of retrieving every step taken in the past with 

equal probability. This feature earned him the Elephant Random Walk 

model (ERW). Some other models were built from the ERW model, such 

as the Alzheimer random walk model (Cressoni et al., 2007), the 

Gaussian memory profile random walk model (Borges et al., 2012), the 

exponential memory profile random walk model (Alves et al., 2014), the 

exponential memory profile random walk model ( Moura et al., 2016) 

and the random walk model with binomial memory profile (Diniz et al., 

2017). 
In this class of random walks memory is an important feature. 

 
𝑋𝑡+1 = 𝑋𝑡 + 𝜎𝑡+1 (1) 

For a while 𝑡 + 1, the variable 𝜎𝑡+1 takes the value +1 (−1) 

when the walker performs a step to the right (left). Remembering that 

memory consists of a set of random variables 

𝜎𝑡′ for the period of time 𝑡′ < 𝑡. The dynamics of this process occurs as 

follows: 

 

a) In the period of time 𝑡 + 1 a number 𝑡′ of the set 1,2, … , 𝑡 is randomly 

chosen with uniform probability 1/ t 

 

b) 𝜎𝑡+1 is determined stochastically by, 𝜎𝑡+1 = 𝜎𝑡′ with probability 𝑝 e 

𝜎𝑡+1 = −𝜎𝑡′ with probability 1 − 𝑝. 

The first step is performed according to a specific rule. In the 

instant 𝑡 = 1; the walker is in position𝑋0, moves to the right𝜎1 = +1 with 

probability of 𝑞 to the left 𝜎1 = −1 with probability 1 − 𝑞. So it follows 

that the stochastic evolution equation is: 

The memory is formed by a set of random variables: 𝜎𝑡′, in which 𝑡′ is 

the uniformly chosen time in the ERW model. Every instant of time t, the 
𝑋𝑡 = 𝑋0 + ∑𝑡 𝜎𝑡′ (2) 

elephant's decision depends on its entire history retrieved from a uniform 

distribution. The probability of recovering a past action is 1⁄𝑡 with 𝑡 as 
the current time. At each moment the decision is recorded in memory, 
such property attributes a non-Markovian characteristic to the random 

walk. The walker walks one step to the right or one to the left, as in a 
one-dimensional Markovian random walk. The equation of stochastic 
evolution is 

The parameter is the probability of the walker repeating a past action at 

the instant of time 𝑡′. For (𝑝 > 1⁄2), the walker exhibits persistent 

behavior; for (𝑝 < 1⁄2) the walker exhibits anti-persistent behavior; for 
(𝑝 = 1⁄2), the random walk is Markovian. There are two extreme points, 
(𝑝 = 0) and (𝑝 = 1), for which random walks exhibit maximum 
behavior. At the point, the most anti-persistent behavior occurs; at the 

Abstract 
 

This manuscript has two purposes. The first objective is to fill a mathematical gap in the coupling formulation of 
two discrete random walk sets by constructing the matrix that quantifies the coupling for walking pairs. The 
second is to report the observation of two phenomena: withdrawal and approach. As the 𝛾 coupling intensity 
grows, we observe the formation of objects with distinct fractal dimensions, which characterize geometric 
transitions in random walks as a function of the coupling probability. We observed two geometric transitions. 
One transition occurs when the system transitions from clearance behavior to approach behavior, another 
occurs when random walkers are in the approach region. So, we make an analogy between random walks and 
pervasive developmental disorders, classifying a set of random walks as healthy and others with pervasive 
developmental disorder (PDD). We note that random walks have critical mutual influence, when 𝛾 = 0.625 the 
coupling is maximum, where we notice the largest reduction in observations of the behavior of the individual 
with PDD. besides, for the set of random walks that represent the healthy set, even without PDD, their actions 
are influenced by individuals with PDD which may lead to a misdiagnosis. 
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point: 𝑝 = 1,the   most   persistent   behavior   occurs:   hiker   moves 𝑃[𝜎𝑖 = ±1] = 1 ∑2 
 

 

[1 + (2𝑞𝑖 − 1)𝜎]𝛾𝑘 (9) 

deterministically. The class of random walks with memory exhibit strong 
1

 2     𝑘=1 𝑘 𝑡𝘍 

dependence on the first step. The first step is macroscopically relevant 

and may influence the diffusion regimes measured by the Hurst exponent 
From equation 7 it is possible to calculate the probability of 𝜎𝑖 = ±1, i.e., 

𝑃[𝜎𝑖 = 𝜎 ∨ 𝜎1, … , 𝜎1; 𝜎2, … , 𝜎2] = 𝑃[𝜎𝑖 = 𝜎 ∨ {𝜎1,2 
(Hurst et al., 1969). 

The first moment of the position is: 

𝑡+1 

which is: 

1 𝑡 1 𝑡 𝑡+1 1,2,…,𝑡}] 

𝛿 𝜆 
 

 

𝑃[𝜎𝑖 = 𝜎 ∨ {𝜎1,2    }] = 1 + 𝜎 ∑2 
 

  

𝛼𝑖𝛾𝑖 𝑥𝑘 (10) 

⟨𝑥(𝑡)⟩ = 
𝛤(𝜆+1) 

𝑡 (3) 𝑡+1 1,2,…,𝑡 2𝑡 2     𝑘=1 𝑡   𝑘   𝑡 

in which 𝛼𝑖 = 2𝑝𝑖  − 1 e   𝑥𝑘 = 𝑋𝑘 − 𝑋𝑘. 
In which 𝛿 = 2𝑞 − 1, 𝜆 = 2𝑝 − 1 and 𝛤 is the gamma 

function. The parameters 𝛿 and 𝜆 are set in the range [−1,1]. 
𝑡 𝑘 𝑡 𝑡 0 

The second moment of the position is given by: The conditional displacement of the i-nth elephant is: 

 
𝑡 , 𝑝 < 3 

 
  

 
⟨𝜎𝑖 = 𝜎|{𝜎 

 
1,2 

 
}⟩ = ∑2 

 
𝑖    𝑖   𝑘 

   𝑘  𝑘   𝑡  

 
(11) 

3−4𝑝 4 𝑡+1 1,2,…,𝑡 𝑘=1 𝑡 

⟨𝑥2(𝑡)⟩ = 
 

𝑡𝑙𝑛𝑡 , 𝑝 = 3 
4 

(4) So from equation 11 we get the recursive relation of the first 
𝑡4𝑝−2 

𝗅(3−4𝑝)𝛤(4𝑝−2) 
, 𝑝 > 3 

4 
moment of position:  

 
𝛼𝑖 𝛾𝑖 ⟨𝑥𝑖    ⟩ = ∑2 (𝛿𝑘𝑖 +   𝑘 𝑘) ⟨𝑥𝑘⟩ (12) 

Observe that (𝑝 < 3⁄4) the second moment, equation 4 depends linearly 

on and the diffusion is ordinary, for (𝑝 > 3⁄4) diffusion is characterized 

𝑡+1 𝑘=1 𝑡 𝑡 

as superdiffusive. In the point (𝑝 = 3⁄4) the second moment is described 

by a logarithmic function of time (Schutz e Trimper, 2004). 
Another offset parameter, in this case for the first step, needs to 

be set as: 𝛽𝑖 = 2𝑞𝑖 − 1. Through this definition we can find the initial 
𝑘 𝑘 

offset for the walking of index: i 
Methodology ⟨𝑥𝑖 ⟩ = ∑2 𝛽𝑖 𝛾𝑖 (13) 

1 𝑘=1   𝑘   𝑘 

The ERW Two Dimensional Model 
 

Two random ERW walkers, 1 and 2, walk along two distinct, 

perpendicular coordinate axes, just like: 𝑥1 and 𝑥2, respectively. In the 

instant of time 𝑡, the position of the first walker is denoted by 𝑋1. He 

recovers steps from his own memory as well as steps from the history of 

the second PAE, labeled 𝑋2. The position of the i-nth random walker is 

quantified by the stochastic equation 

 
𝑋𝑖 = 𝑋𝑖 + 𝜎𝑖 (5) 

The memory-coupled elephant random walk model was published in 

(Marquioni, 2019). Based on it, we reproduce the above results as a basis 

for building our model. Our model will use the memory coupling 

mechanisms introduced numerically and analytically in (Moura et al., 

2018) and (Marquioni, 2019), in this exact order. 

 

The Random Walk Model with PDD Characteristic 

The PDD analogy for constructing the random walk model was 

first presented in (Moura et al, 2018). Others work emerged as a 
𝑡+1 𝑡 𝑡+1 

consequence, investigating new phenomenologies and introducing new 

with 𝑖 = 1,2. Microscopic dynamics follows the following rules: 

 

1) in the period of time 𝑡 + 1, the elephant: 𝑖 choose one of the 

indexed elephants 𝑘 = 1,2 with probability 𝛾𝑖 . This 

probability must to satisfied the following relationship 𝛾𝑖 + 

mathematical   tools   (Moura-Ramos-Ramos,   2018),   (Moura,   2019), 

(Marquioni, 2019). 

In (Moura et al, 2018), PDD-type random walks were first 

introduced. In this model two random walks are unilaterally coupled, that 

is, one set of random walkers is influenced by the microscopic decisions 

𝛾𝑖 = 1; 

2) in the period of time: 𝑡 + 1, a period of time: 𝑡′ 
chosen from the set {1,2,3, … , 𝑡}; 

1 

 

is uniformly 

of the other set of walkers, which are independent. 
The first set of random walks is defined as independent, defined 

as the ERW model, which has the label of “Professor”. This model makes 

decisions from  its own history. The second set of randoms, labeled 
3) in the period of time: 𝑡 + 1, the step of i-th of the elephant is 

𝜎𝑖 = +𝜎𝑘, with probability 𝑝𝑖 e 𝜎𝑖 = −𝜎𝑘, with “Student”, because it has the characteristic of maximum persistence in its 
𝑡+1 𝑡′ 𝑖 𝑘 𝑡+1 𝑡′ microscopic decisions was defined as autistic, which can be influenced by 

probability 1 − 𝑝𝑘. So we note that the probability is: its microscopic decisions according to its own memory or according to the 
𝑃[𝜎𝑖 = ±𝜎𝑘 ∨ 𝜎𝑘] = 1 [1 + (2𝑝𝑖 − 1)𝜎 𝜎𝑘] 

𝑡+1 𝑡𝘍 𝑡𝘍 
2

 𝑘 𝑡+1 𝑡′ 

(6) 
memory of the ERW model. Decisions are retrieved from your memory 
(Professor's memory) with probability (𝛾) ((1 − 𝛾)). A superdiffusive 

4) The probability of the first step is: 
𝑃[𝜎𝑖 = ±1 ∨ 𝑠𝑒𝑛𝑡𝑖𝑑𝑜𝑑𝑒𝑘] = 1 [1 + (2𝑞𝑖 − 1)𝜎𝑖] 

 
 

regime was observed for all feedback parameter values in the range: p Є 

[0,1] with (𝛾 ≠ 0). This phenomenon has never been observed in another 
1 

(7) 
2 𝑘 1 

model derived from the ERW randoms. For (𝛾 = 0) walkers diffuse 

independently. 

The probability of the step of the i-nth that is walking in time 𝑡 + 1, 
𝜎𝑖 = 𝜎, that comes from the spectrum of possibilities of the set 

In (Moura-Ramos-Ramos, 2018), it was proposed to answer the 

following questions: How can the Professor influence and be influenced 
1 

1 2 
by the Student's microscopic decisions? If both learn from each other by 

{𝜎𝑡′, 𝜎𝑡′}, is 
𝑃[𝜎𝑖 = 𝜎 ∨ 𝜎1,2] = 1 ∑2 

 
 

 
[1 + (2𝑝𝑖 − 1)𝜎𝜎𝑘]𝛾𝑖 

making microscopic decisions that influence each other, what can we call 

a Professor process and Student process? To solve this apparent teaching- 
𝑡+1 𝑡𝘍 

2𝑡 𝑘=1 

(8) 
𝑘 𝑡𝘍    𝑘 

learning paradox, by construction, a bilateral memory coupling was 

performed. The Professor can learn (not learn) from the Student's 

In which the parameter𝛾𝑖 is probability of coupling of the i-nth elephant 

in relation to 
k-nth elephant. So the probability of the first step is: 

decisions. Similarly, the Student can learn (not learn) from the Professor's 

decisions. 

From the next section, we will use the mathematical formulation 

presented in (Marquioni, 2019), (Bercu, 2018) and (Bercu et al, 2019) to 

https://www.auctoresonline.org/journals/mathematical-methods-in-engineering
http://www.auctoresonline.org/


 J Mathematical Methods in Engineering 

  Auctores Publishing – Volume 2(1)-004 www.auctoresonline.org  Page - 3  

 

 

𝑗 

2 

⟨𝑥 ⟩ 𝑡 

2 1 

2 1 

2 1 

construct the coupling matrix that describes mutual influence of random 

walks. This is one of the main objective of this work. 

 

The coupling 
 

At this point, we will label “Professor” as set of random walks 

1 and “Student” as set of random walks 2. Random walks 1 and 2 walk 

on different coordinate axes, the randoms with number 1 walk on axis 𝑥1, 

perpendicular to the axis 𝑥2 where the 2 randoms 2 walk. Each walker's 

microscopic steps may influence each other's present state. The 

probability of walker decisions: 𝑖 to be influenced by walker decisions: 𝑗 
is quantified by the coupling coefficient 𝛾𝑖. 

Coupling coefficients are listed as follows: 

 
𝛾1 = 1 − 𝛾1 

We performed coupling between the aforementioned random walkers. 

The Professor with label 1 and the Student with label 2. We performed 

measurements of the first moment of Hurst position and exponent for 

various coupling intensities values: 𝛾. 

 

Discussion & Conclusion 
 

We measured the effects of random walkers' coupling from 

fractal dimension measurements. To perform the measurements of the 

physical observables of the diffusive processes we proceeded with the 

ordinary analysis of the first moment of position ⟨𝑥⟩ and measurements of 

the fractal dimension (𝐷). In problems that can be modeled by random 

walks the diffusive regimes can be measured by the exponent H. The 

diffusive behavior can be quantified from the asymptotic scale law of the 
mean square deviation of position in relation to time that is (𝑥𝑖)

2 
= 𝐴 𝑡2𝐻𝑖 

1 2 𝑡 𝑖 
𝛾1, ∀0 ≤ 𝛾1 ≤ 1 with i=1,2 related to walkers labeled 1 and 2. Where 𝐴𝑖 is a constant of 

2 2 (15) 
𝛾2, ∀0 ≤ 𝛾2 ≤ 1 proportionality and 𝐻𝑖 is the Hurst exponent of the i-nth walker. Diffusive 

1 2 1   2 regimes can be classified into sub-diffusive (𝐻 < 1⁄2), ordinary diffusive 

𝗅 𝛾2 = 1 − 𝛾1 

According to equation 15, the first moment of position is given by the 

relation below: 

(𝐻 = 1⁄2) and super diffusive (𝐻 > 1⁄2) (Hurst et al., 1969). The 

fractal dimension is related to the Hurst exponent according to the 

following equation𝐷𝑖 = 𝛿 + 1 − 𝐻𝑖, in which 𝛿 is dimension in Euclidean 
⟨𝑥1   ⟩ 1    𝑡 + (1 − 𝛾1)𝛼1 𝛾1𝛼1 ⟨𝑥1⟩ space and 𝐷𝑖 is the fractal dimension. The problem is modeled from a two- 

(   𝑡+1 ) =   ( 
 

2      1 2   2 ) (   𝑡  ) (16) dimensional random walk (𝛿 = 2). 
⟨𝑥2   ⟩ 𝑡 𝛾2𝛼2 𝑡 + (1 − 𝛾2)𝛼2 ⟨𝑥2⟩ 

𝑡+1 1    1 1 2 𝑡  
In Figure 1, measurements of the difference in the first moment 

According to equation 16, under the condition that there is a double position of random walkers are displayed. ⟨𝑥1    ⟩ − ⟨𝑥2   ⟩. The typical 
coupling of 2 to 1, as well as 1 to 2. There are two cases to consider for 𝑡+1 𝑡+1 

coupling: the symmetrical case (𝛾1 = 𝛾2) and the non-symmetrical case 

(𝛾1 ≠ 𝛾2). In the symmetrical case walkers 1 and 2 have the same 

learning probability (𝛾1 = 𝛾2). In the non-symmetrical case 1 or 2 may 

behavior of the first position moment for the random walkers 1 and 2 

coupling problem, as a function of feedback and coupling: 𝑝 and 𝛾, 

respectively; It is characterized by two phenomena. The phenomena of 
2 1 distance and approach. Measurements were made for the feedback 

have probability functions that grow faster than the other. For example: 
(𝛾1 > 𝛾2)when walker 1 is more likely to modify his microscopic 

decisions according to walker 2's actions, and (𝛾1 < 𝛾2) otherwise. Let's 

parameter 0 ≤ 𝑝 ≤ 1coupling parameter varying in range: 0 ≤ 𝛾 ≤ 1. 

Our observations show that the clearance prevails over the approximation 
phenomenon to typical values of: 𝛾 < 0.2. In 𝛾 = 0, the distance appears 

2 1 address the case where(𝛾1 = 𝛾2 = 𝛾) with 0 ≤ 𝛾 ≤ 1.   Besides, let's with greater intensity, presenting average differences of the order of steps. 
2 1 

vary a single feedback probability parameter by calling 𝛼1 = 𝛼1 = 𝛼2 = As the coupling grows: 𝛾 > 0, The distance between walkers is reduced. 

𝛼2 = 𝛼 com −1 ≤ 𝛼 ≤ 1, in which 𝛼 = 2𝑝 − 1. 
1 2 1 

In 𝛾 ≈ 0.2, this average difference is reduced to the order of 100 steps. So 

from this point 𝛾 > 0.2, the approximation phenomenon prevails over the 

Following these changes we rewrite the matrix equation of the first 

moment of position as: 
removal phenomenon, becoming stronger as 𝛾 → 1 memory coupling 

becomes more intense. 
⟨𝑥1    ⟩ 1    𝑡 + (1 − 𝛾)𝛼 𝛾𝛼 ⟨𝑥1⟩ 

(   𝑡+1 ) =   ( 
 

) (   𝑡 ) (17) 
2 𝑡 
𝑡+1 𝛾𝛼 𝑡 + (1 − 𝛾)𝛼 ⟨𝑥2⟩ 

 

 
Figure 1: Typical measurements of the average distance difference between walkers 1 and 2 ⟨𝑥1 ⟩ − ⟨𝑥2   ⟩ for 𝑝 = 1⁄2. Measurements were made 

for coupling parameter varying in the range: 0 ≤ 𝛾 ≤ 1. 
𝑡+1 𝑡+1 

https://www.auctoresonline.org/journals/mathematical-methods-in-engineering
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In Figure 2, fractal dimension measurements are displayed by 

setting the feedback parameters to a single value: 𝑝1 = 𝑝2 = 𝑝 . The curves 

were obtained for the quantitative values of the feedback parameter equal 

to 𝑝 = 0.7 and 𝑝 = 0.9 and for the coupling parameter in the range of 0 ≤ 
𝛾 ≤ 1. The fractal dimension curves of the random walkers were labeled 

as follows: the label RW1 for walker 1 and RW2 for the second walker. 

The curves at the top of figure 2 are for 𝑝 = 0.7. We note that the rapid 

convergence of the fractal dimensions occurs (𝐷1 ≈ 𝐷2) even when the 

system is subjected to a slight increase in the coupling parameter : 𝛾. 

Insofar as: 𝛾 gets stronger the coupling becomes, and the system no longer 

exhibits a characteristic behavior of the withdrawal phenomenon, 

transitioning to a behavior that characterizes the approach phenomenon. 

Approximation is a phenomenon characterized by fractal dimension 

measurements that converge to a single value for both random walkers. 

𝐷1 = 𝐷2. In 𝛾 = 0, random walkers with label 1 exhibit fractal 

dimension: 𝐷1 ≈ 2.5, characteristic of a dimensioned object between a 

two-dimensional object and a three-dimensional object, whereas the 

.random walkers with label 2 have 𝐷2 = 2 of a two-dimensional object. 

As the coupling increases: 𝛾 > 0, the measures of 𝐷1 decrease and the 

𝐷2 measures increase. After a variation in the coupling parameter, we 

note that the fractal dimensions of two random walkers converge to 

typical congruent values: 𝐷1 = 𝐷2. At the bottom of Figure 2, for 𝑝 = 
0.9 we noted the same convergence behavior for fractal dimension 

measurements. We observed a behavioral change in the fractal dimension 

measurements of walker 1 in the 𝛾 < 0.2. The 𝐷1 measures show that 

there is an oscillation in the region of 𝛾 < 0.2, which is characterized by 

the increase of 𝐷1, for a small increase 𝛾 > 0, of a two-dimensional 

object (𝐷1 = 2) for an object with dimension between two-dimensional 

and three-dimensional, with fractal dimension (𝐷1 ≈ 2.3). Increasing the 

values of 𝛾, we noted the quantitative reduction of 𝐷1. And also 

increasing 𝛾, in the region 𝛾 > 0.2, approximately we noted the 

convergence of fractal dimension measurements 𝐷1 = 𝐷2 = 𝐷. After 

the convergence in fractal dimension measurements, which we noted 

only by 𝐷, the dimension of random walks undergo a transition from a 

object with dimension 𝐷 > 2 for a two-dimensional object 𝐷 = 2. 

 

 
 

Figure 2: Fractal dimension measurements (𝐷) walkers 1 and 2. Measurements were made for the feedback parameter equal to 𝑝 = 0.7 and 𝑝 = 0.9 
with coupling parameter varying in the range of 0 ≤ 𝛾 ≤ 1. We use the label RW1 for walker 1 and RW2 for the second walker. 

 

Conclusion 

 
We proceed with the mathematical formulation of the coupling of two 

discrete random walk sets with two-dimensional coupling. We built the 

matrix that quantifies the coupling for discrete random walking pairs. From 

the coupling matrix, we perform numerical experiments to obtain the 

physical observables. 

We perform numerical simulations of memory-coupled walks to answer 

the following question: How can the Professor influence and be influenced 

by the Student's microscopic decisions and vice versa? If both walkers 

learn from each other, how can we support the analogy of teaching and 

learning and call one process Professor and Student process? This apparent 

teaching-learning paradox was resolved by using the bilateral memory 

coupling technique (Moura-Ramos-Ramos, 2018). 

We observed two physical phenomena related to coupling: the 

phenomenon of distance and approach. We noted that in the distance 

phenomenon, random walkers diffuse with less dependence, while greater 

variations in the coupling parameter are accompanied by greater 

dependence among random walkers. This dependence was quantified from 

the measurements of the first moment of position and fractal dimension of 

walkers 1 and 2. With a slight increase in the variation of the coupling 

parameter the system converges to the measurements of the first moment 

of position and to the fractal dimension measurements. More severe 

mental disorders are related to smaller fractal dimensions, while larger 

fractal dimensions can be used to classify less severe degrees of invasive 

developmental disorders. The distance and approach phenomena show 

rapid convergence with variations in the coupling probability. These 

phenomena carry the information that even a walkable individual, walker 

1, in giving in and receiving information from an individual with some 

type of invasive developmental disorder, walker 2, can be influenced by 

its actions. The bond for mutual learning is quantified by the probability 

of coupling, which does not classify the reasons for justifying the 

intensity of coupling, we take as random because we do not know them, 

we can quantify them from the coupling parameter. We observed that 

walker 2, too, is influenced by walker 1's actions. Coupling has as a 

consequence the quantitative increase of fractal dimension for walker 1, 

which is associated with lower observations of the behavior of an 

individual with some invasive developmental disorder. 
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