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Abstract  

Relative amounts of variables, such as body fatty acids, might be positively or negatively associated. The purpose 
of the present work was to investigate further, how such correlations might arise. One particular feature seemed to 
be that distributions of the variables were crucial for obtaining either positive or negative correlations, and for their 
strength, suggesting the name Distribution Dependent Correlations (DDC). The present work suggests that, with 
three positive scale variables, two of which (A, B) having very low variability relative to a third one (R), we should 
expect a positive association between percent A and percent B, the slope being estimated by the B/A ratio. 
Furthermore, we should expect a negative relationship between %R and %A (%B), in the current context. On the 
other hand, if A and B have high numbers and broad ranges relative to R, then %A should relate inversely to %B. 

Thus, ranges of A, B, and R seem to govern associations between their relative amounts, and alterations in the 
ranges have appreciable effects to change the associations. We suggest that evolution might utilize DDC to regulate 
metabolism, as suggested to occur with body fatty acids. 

Keywords: correlation rules; relative amounts; distribution; biological regulation; fatty acids  

Definitions and Abbreviations:  

Variability:  the width or spread of a distribution, measured e.g. by the 
range and standard deviation. 

Distribution: graph showing the frequency distribution of a variable 
within a particular range. In this article, we also use distribution when 
referring to a particular range, a – b, on the scale. 

Uniform distribution: every value within the range is equally likely. In 
this article, we may write, “Distribution was from a to b”, or 
“Distributions of A, B, and C were a - b, c - d, and e - f, respectively”.  

OA = Oleic Acid (18:1 c9); LA = Linoleic Acid (18:2 n6); ALA = Alpha 

Linolenic Acid (18:3 n3); AA = Arachidonic Acid (20:4 n6); EPA = 
Eicosapentaenoic Acid (20:5 n3); DPA = Docosapentaenoic Acid (22:5 
n3); DHA = Docosahexaenoic Acid (22:6 n3); DGLA= dihomo-
gammalinolenic acid (20:3 n6) 

 “Low–number variables” have very low numbers relative to “high-
number variables”. 

Introduction  

Fatty acids in blood and tissues are important in health and disease, and 
diet influences the body amounts [1-3]. Poly-unsaturated fatty acids with 
20 or 22 carbon atoms serve as precursors for physiologically important 

regulatory molecules, concerning inflammatory and other diseases, i.e. 
the eicosanoids and docosanoids. Most organs and cell types produce 
these powerful metabolites, in reactions catasyzed by cyclooxygenases, 
lipoxygenases, and epoxygenases [4].  

Eicosanoids derived from EPA (20:5 n3) may decrease inflammatory 

diseases [5, 6], improve coronary heart diseases [7, 8], and cancer [9]. 
However, a systematic Cochrane Review of selected studies questioned 
the beneficial effects of long-chain n3 fatty acids on all-cause and 
cardiovascular mortality [10]. 

When considering the beneficial health effects of foods rich in foods rich 
in n3 fatty acids, such as EPA [3, 7], we might anticipate many of the 
positive effects, if EPA works to counteract effects of AA (20:4 n6). This 
latter fatty acid is formed in the body from linoleic acid (LA, 18:2 n6), a 

major constituent in many plant oils, and is converted by cyclooxygenase 
and lipoxygenase into various eicosanoids, i.e. prostaglandins, 
prostacyclin, thromboxane, and leukotrienes [1,2].  AA derived 
thromboxane A2 (TXA2) and leukotriene B4 (LTB4) have strong 
proinflammatory and prothrombotic properties, and are involved in 
allergic reactions and bronchoconstriction [1, 2, 4]. Furthermore, AA- 
derived endocannabinoids may have a role in adiposity and inflammation 
[11]. Additionally, low serum EPA/AA ratio was a risk factor for cancer 
death in the general Japanese population [9].  

  Open Access       Research Article  

          Journal of Nutrition and Food Processing 
                                                                                                                                                     Arne Torbjørn Høstmark*                                                                                                                                            

AUCTORES 
Globalize your   Research 



J Nutrition and Food Processing                                                                                                                                                      Copy rights@ Arne Torbjørn Høstmark 

 

 
Auctores Publishing – Volume 4(1)-039 www.auctoresonline.org  

ISSN: 2637-8914   Page 2 of 15 

Not only the eicosanoids, but also docosanoids, originating from C22 

fatty acids (DPA, DHA), have strong metabolic effects. Among these 
latter compounds are protectins, resolvins, and maresins, which may 
strongly counteract immune- and inflammatory reactions [4].  Also 
eicosatrienoic acid, i.e. 20:3 n6 (dihomo-gammalinolenic acid, DGLA) 
may serve as precursor for eicosanoids [4]. However, to our knowledge, 
there are less data on eicosanoids derived from three other C20 fatty acids: 
the two eicosatrienoic acids 20:3 n3 and 20:3 n9 (Mead acid), and 
eicosadienoic acid (20:2 n6).  

In order to achieve a balance between the metabolic influences of the 
many eicosanoids and docosanoids, we would expect a coordinated 
regulation of the precursor fatty acid percentages, e.g. of % EPA, %AA, 
%DGLA, and of other relevant fatty acid percentages. Indeed, we might 
expect in general that these particular percentages of the total sum of fatty 
acids were positively associated, so that an increase (decrease) in e.g. 
%AA would be accompanied by a concomitant increase (decrease) in 
other fatty acid precursor percentages as well, in order to obtain the 

required balance. We previously reported that that %AA, %EPA, and 
%DHA were positively associated in breast muscle lipids of chickens [12, 
13, 14].  We also showed that this correlation outcome was related to the 
particular concentration distributions of the fatty acids, as suggested by 
similar outcomes with true values and surrogate random numbers, 
however sampled with the true ranges [13 - 17]. Computer experiments 
showed that altering ranges strongly influenced the correlation outcomes, 
suggesting the name Distribution Dependent Correlations, DDC [13, 17 

- 22].  

In addition, relative amounts of blood neutrophil granulocytes and 
lymphocytes seemed to be negatively associated because of their 
particular ranges [23].  

In the present work, we raise the general question of whether relative 
amounts of particular variables are positively or negatively associated. 
Since DDC rules are general, we anticipate that they should apply to any 
unit system in nature. However, investigations specifically focusing upon 
this issue seem hard to find, in a literature search. The apparent lack of 

interest might possibly relate to a methodological concern encountered 
when correlating percentages of the same sum, since significant 
associations could arise mathematically [24]. On the other hand, it may 
not always be apparent whether positive (negative) associations between 
percentages of the same sum should be rejected as correlation bias, or 
rather be considered to have biological relevance. If DDC is an 
evolutionary regulatory principle, as previously suggested [19 - 21], we 
should expect strong correlations.  

The aim of the present work was to examine in more detail, how 
percentages of the same sum might give strong correlations. First, we 
present theoretical considerations, and then show results of computer 
experiments to test the hypotheses.  

Materials and Methods  

Previously [20], we investigated the association between relative amount 
of arachidonic acid (20:4 n6) and percentage of e.g. eicosapentaenoic acid 
(EPA, 20:5 n3), in chicken lipids. From histograms, the physiological 
concentration distributions (g/kg wet weight) for the fatty acids were 
determined. Next the sum (S, g/kg wet weight) of all fatty acids was 
computed, as well as and the remaining sum (R)  when omitting the couple 
of fatty acids under investigation, thereby apparently obtaining 3 positive 
scale variables. With these variables, and with surrogate random number 

variables, generated with the true concentration distributions, computer 
analyses as described in detail below, were carried out. For the purpose 
of the present work, the three positive scale variables were named A, B, 
and R. Previous analyses [19, 20] demonstrated that correlations between 
e.g. %A and %B depended upon the particular distribution (range) of each 

of the variables involved. Thus, we obtained similar correlation outcomes 

using the true (measured) values, or random numbers, if the ranges were 
like the measured ones.  

A major part of the present work consists of computer experiments using 
random numbers to explore further, how distributions of A, B, and R 
might influence the association between relative amounts of the sum, S = 
A + B + R. Dependency between percentages is shown by the equation 
%A + %B + %R = 100. Using random numbers for A, B, and R, each of 
which sampled within defined ranges; we studied histograms, 

scatterplots, and correlations (Spearman’s rho). Computer experiments 
were performed, to study how alterations in the ranges of the random 
numbers might change associations between %A, %B, and %R.  Several 
repeats were carried out, with new sets of random numbers (n = 200 each 
time); the general outcome was always the same, but corresponding 
correlation coefficients and scatterplots varied slightly.  

We present the results mainly as scatterplots with correlation coefficients. 
In most of the computer experiments, the random numbers had uniform 

distribution, but we used random numbers with normal distribution as 
well, however obtaining qualitatively similar results.  We used SPSS 27.0 
for the analyses, and for making figures. The significance level was set at 
p < 0.05. We present further details under Results and Discussions. 

Results and Discussions  

We may encounter poor correlations in many contexts. However, if 
evolutionary selection is involved in associations between variables, we 
should probably expect correlations to be strong. In the reasoning below, 
and computer experiments, we try to find and explain conditions giving 
strong associations between percentages of the same sum. As outlined in 
the introduction, our previous observations with fatty acids initiated the 
current work. 

Below, we extend the utilization of two main approaches to explain strong 

Distribution Dependent Correlations, i.e. 1) applying the equation of a 
straight line, and 2) considering the relationship between sum (S) of all 
variables and fractions (percentages) of S. Thus, the present study is an 
extension of our previous considerations and observations [13-17], to 
explain the correlation outcomes in more detail. For the purpose of the 
present work, it accordingly seems pertinent to include briefly some of 
the previous results. 

Utilizing the Equation of a Straight Line (y = ax +b) 

If S is the sum of many positive scale variables, S = A + B + C + …, we 
may simplify to S = A + B + R, i.e. %A + %B + %R = 100, or %B = -%A 
+ (100 -%R), where R is the sum of all variables, except A and B. This 
equation seems to resemble the equation of a straight line, however 
involving percentage amounts of three unknown variables (A, B, R), each 

of which with a defined distribution (range). We previously considered in 
particular the equation, if 1) the expression (100 - %R) was approaching 
zero, and 2) if %R was approaching zero.   

% R Approaching 100 [27] 

The %A vs. %B Association  

If %R consists of high values (close to 100) and (100 - %R) > %A, then 

the equation appears to approach %B = %A, apparently showing a linear 

positive association between %A and %B. The requirement (100 - %R) > 

%A  is indeed satisfied, since the remaining value when calculating (100 

- %R) would have to be divided between %A and %B. Hence, the slope 

of the %A vs. %B regression line should be positive. We may estimate 

the slope by utilizing maximum and minimum values of %B and %A, i.e. 

by the ratio (%Bmax - %Bmin)/(%Amax - %Amin). A more general equation 

would therefore be: 
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 %B(p - q)  = [(%Bmax - %Bmin)/(%Amax - %Amin)]*%A (r - s) + z                

The subscript parentheses indicate ranges of %A and %B, and z = 100 - 

%R. Thus, z becomes increasingly small as %R increases.     

The %R vs. %A (%B) Association  

Since we have defined A and B to have very small values relative to R, it 

follows that also values of %A and %B should be small relative to %R.  

We rewrite the equation %A + %B + %R = 100, to be %B = -%R + (100 

-%A).  With very small %A - values, the equation would approach %B = 

-%R + 100, suggesting that %R and %B are inversely related. Similarly, 

the approximation %A = -%R + 100, suggest an inverse %R vs. %A 

association. Hence, in the current case, we should expect a negative %R 

vs. %A (%B) association.  

 Computer testing: To obtain high %R values relative to %A and %B, we 

arbitrarily chose A 1.0 - 1.3; B 2.0 - 2.2; R 30 - 200. As shown in Figure 

1, there was a strong positive association between %A and %B, and a 

strong negative relationship between %R and %A (%B). Spearman’s rho 

= 0.983 for %A vs. %B; rho = -0.992 (-0.998) for %R vs. %A (%B), 

p<0.001 for all, n = 200. Quartiles of %A, %B and %R were 0.8, 1.1, 1.6; 

1.4, 1.9, 2.9; and 95.5, 97.1, 97.9, respectively. Thus, %R had high values 

relative to %A and %B. Skewness of %A, %B, and %R was 1.26, 1.24, 

and -1.24, respectively (SD 0.17 for all). Below, we explain this skewness 

outcome. 

 

 

Figure 1: Association between %A and %B (left panel), and between %A(%B) and %R (middle and right panel). The figure relates to the equation %A 
+ %B + %R = 100, see text. Random numbers (n = 200) with uniform distribution were generated. Ranges were A 1.0 - 1.3; B 2.0 - 2.2; R 30 - 200. %A 

vs. %B: rho = 0.983; %R vs. %A (%B): rho = - 0.992 (- 0.998); p<0.001 for all. 

These results seem to be in line with the reasoning above: with very high 

%R values relative to %A and %B values, we should expect a positive 

association between %A and %B, and a negative relationship between 

%R and %A (%B). Additional computer experiments with a large number 

of varying ranges of the variables, however always keeping the above 

restrictions, showed results in keeping with the reasoning (results not 

shown).       

% R Approaching Zero 

If %R in the equation %B = -%A + (100 - %R) consists of very low values 

relative to %A (%B), we would expect a negative %A vs. %B association, 

since the equation in this case would approach %B = - %A + 100. 

However, in this case we should probably not expect that a decrease in 

%R would suffice to compensate a major increase in %A or %B. Hence, 

we should probably expect a poor correlation between %R and %A (%B). 

Computer testing: To obtain very low values of %R relative to %A and 

%B, we arbitrarily chose A 10 - 50, B 20 - 67, R 0.10 - 0.13. Spearman’s 

rho = -1.000 for %A vs. %B, p<0.001, n =200; rho = 0.044 (-0.048), p = 

0.532 (0.502) for %R vs. %A (%B). Quartiles of %A, %B and %R were 

33.2, 40.8, 50.0; 49.9, 59.1, 66.6; 0.12, 0.15, and 0.18, respectively. Thus, 

values of %R were small relative to those of %A and %B. 

Considering the Relationship between Sum (S) of the 
Variables and Their Fractions (Percentages) of S [25, 27] 

Theoretical Considerations  

We limit our reasoning to positive scale variables. Above we reasoned 

that, with a combination of two low-number variables (A, B) having 

narrow ranges relative to a third one (R), we might expect a positive 

association between %A and %B, and a negative relationship between 

%R and %A (%B). We now raise the question of whether also other than 

low numbers of A and B, however always with very low variability 

relative to R, might give positive %A vs. %B associations. Obviously, in 

this case the equation %B = -%A + (100 - %R) does not seem applicable, 

since (100 - %R) in many cases would not approach zero.  

Two Positive Scale Variables (A and B) with Narrow Ranges Relative 

to a third One (R) with High Variability  

We first consider the relationship between sum (S) of the variables and 

the A (B) fractions (percentages) of S. Intuitively; we would anticipate 

these fractions to decrease as S increases from lowest to highest value 

within the S - range. We should expect a positive correlation between A 

and B percentages, if both of them relate negatively to S. Furthermore, 

%R vs. %A (%B) should be inversely related, because %R should 

increase with increasing S. To explain this outcome in more detail, we 

omit ranges of the variables, and write A + B + R = S. The A, B, and R 

fractions of S are Af =A/S, Bf = B/S, and Rf = R/S, respectively. 

Thus, Af = A/(A + B + R) = 1/(1 + B/A + R/A). However, since we - in 

the current context - define ranges of A and B to be very narrow, the B/A 

ratio is close to be a fixed number. Therefore, Af would approach Af = 1/(t 

+R/A) where t approaches a constant, i.e. t = 1 + B/A. Similarly, the B-

fraction of S, Bf = B/ (A + B + R) = 1/ (1 + A/B + R/B), i.e. Bf = 1/ (k + 

R/B), where k is close to be a constant: k = (1 + A/B).  

This means that R will largely govern the A (B) fractions. Thus, when R 

and S (being mainly composed of R) go from lowest to highest value, then 

Af = 1/(t + R/A), and also Bf = 1/(k + R/B), will go from the highest to 

the lowest value. Hence, S should relate inversely to the A- and B- 
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fractions (percentages). This way of reasoning should apply to any 

positive values of A, B, and R, if ranges of A and B are very narrow 

relative to that of R.  Accordingly, with this restriction, we should expect 

percent A to be positively associated with %B, wherever we place A, B, 

and R on the positive scale. However, increasing the A- and/or B-ranges 

(variabilities), and/or decreasing the R-range, would cause deviations 

from the above restrictions, and accordingly attenuate the %A vs. %B 

association, suggested to be reflected in scatterplots and correlation 

coefficients.  

In brief, we may consider what happens to the B-fraction of S as the A-

fraction increases. The A fraction of S, i.e. Af =1/(t +R/A), decreases 

when R goes from lowest to highest value. Simultaneously, also the B-

fraction of S, i.e. Bf = 1/(k + R/B), decreases. Thus, the A and B fractions 

(percentages) of S should correlate positively, in the current context. 

The R-fraction of S is Rf = R/S = R/ (A + B + R), i.e. Rf = 1/ (1 + z/R), 

where z is close to a constant, z =A + B. Therefore, the R fraction (and 

percentage) of S should increase with increasing R (from lowest to 

highest value), and accordingly also with increasing S, because R is the 

main contributor to S. Thus, S should be positively associated with %R, 

irrespective of where on the positive scale we place A, B, and R. It follows 

that %R should be negatively associated with %A and %B.  In summary, 

from the relationships between S and A (B, R) percentages (fractions) of 

S, when putting the current restrictions on the ranges, we would anticipate 

a positive %A vs. %B association, and an inverse relationships between 

%R and %A (%B), wherever we encounter A, B, and R on the positive 

scale.  

Two Positive Scale Variables (A and B) with Broad Ranges (High 

Variability) Relative to a Third One (R) with Low Numbers and Very 

Low Variability  

To predict associations between percentages in this case, we use three 

ways of reasoning: 

- Common sense: When approaching two variables only, their relative 

amounts should relate negatively.  

- Utilizing the equation of a straight line [27]: If  %A + %B + %R =100,  

the equation would approach  %B = -%A + 100, if %R values are very 

small. Thus, %B should relate negatively to %A. 

- Considering S vs. fractions of S [27].  Af = A/(A + B + R) = 1/[1 + (B 

+R)/A] should increase as B goes from highest to lowest value, and/or A 

goes from lowest to highest value. The B-fraction of S, Bf = B/(A + B + 

R) = 1/[1 + (A + R)/B] should increase as A runs from highest to lowest 

value, and B runs from lowest to highest value. Since Bf decreases as Af 

increases, we should expect a negative association between %A and %B, 

in the current case.  

Thus, there seems to be two conditions giving strong negative 

correlations between fractions (percentages) of 3 positive scale variables. 

1) If A and B have broad ranges and high numbers relative to R, then %A 

and %B should correlate negatively. 2) If A and B have very narrow 

ranges relative to R, then %R should relate negatively to %A and %B. 

Computer Testing: To achieve high variabilities of %A and %B, and low 

%R values with low variability, we arbitrarily chose the following ranges: 

A 1 - 10; B 5 - 50; R 0.10 - 0.12. As shown in Figure 2, there was a strong 

negative association between %A and %B, rho = -1.000, p < 0.001, n = 

200. Regression line for %A vs. %B: %B = - 1.010(0.001)*%A + 

99.8(0.03). As anticipated, there was a moderate positive correlation 

between %A and A (rho = 0.671, p<0.001, n =200), and a negative 

association between %A and B (-rho = -0.658, p<0.001, n =200). Also 

correlations between %B and A (B) were as expected (not shown). 

Figure 2:  Association between %A and %B (left panel); the figure relates 
to the equation %A + %B + %R = 100, see text. Random numbers (n = 

200) with uniform distribution were generated. Ranges were A 1- 10; B 5 - 

50; R 0.1 - 0.12.  %A vs. %B: rho = -1.000; p<0.001. 

Chapter Summary and Some Additional Tests 

In all of the previous cases, we aimed at selecting conditions suggested to 

give strong associations between relative amounts of three variables, and 

considered how each of the fractions would change within ranges of the 

variables.  

Condition 1: Two variables (A, B) with very narrow ranges, and a third 

one (R) with broad range. 

In this case, A and B are close to constants, and R is the only real variable. 

To assess possible correlations between their fractions (percentages), we 

need to consider what happens to each of them as R increases from lowest 

to highest value. Af = 1/[1 + (B +R)/A] should decrease as R increases, 

and so will also Bf =1/[1 + (A +R)/B] respond. Hence, %A and %B 

should correlate positively. In contrast, Rf = 1/[1 + (A +B)/R] should 

increase as R increases. Hence, %R should relate negatively to %A and 

%B.  

 Condition 2: Two variables (A, B) with broad ranges, and a third (R) 

with very narrow range  

In this case, Af = 1/[1 + (B +R)/A] should increase as A increases and/or 

B decreases. Furthermore, Bf =1/[1 + (A +R)/B] should increase as A 

decreases and/or B increases.  

Since Af increases as Bf decreases, we should expect %A and %B to relate 

negatively. 

Additionally, Rf =1/[1 + (A +B)/R] should decrease as (A +B) increases. 

Since one particular value of (A + B) corresponds closely to one Rf value, 

we should expect a strong inverse association between Rf and (A + B). In 

contrast to this, there could be many combinations of A and B values 

giving the same sum of them (A + B). For example, if we choose A = 1, 

2, or 3; and B = 7, 8, or 9, then the sum (A + B) could have these values: 

8, 9, 10 (obtained with A =1); 9, 10, 11 (A = 2); 10, 11, 12 (A =3). Hence, 
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we should probably not expect a strong correlation between Rf and A (B). 

A similar reasoning goes for associations between Rf and Af (Bf) as well. 

It is beyond the scope of this article to consider these associations in more 

detail. 

Computer test: To obtain broad ranges of A and B, and low numbers and 

narrow range of R, we arbitrarily chose: A 1 - 90; B 3 – 352; R 3.0 – 3.1, 

emphasizing that we chose these values just to illustrate a mathematical 

point, without any relationship to biology.  In line with the above 

reasoning, %A was negatively associated with %B, rho = -0.995, 

p<0.001, n = 200, Figure 3, left panel. Correlations between %R and %A 

(%B) were poorer (scatterplots not shown): rho = 0.491 (-0.552), p<0.001, 

n =200. As shown in Figure 3 (middle panel), there was a strong 

curvilinear inverse relationship between %R and (A + B), and a poor 

association between %R and A (Figure 3, right panel), in keeping with the 

reasoning above. 

 

Figure 3:  Association between %A and %B, between (A + B) and %R, and between A and %R. The figure relates to the equation %A + %B + %R = 
100, see text. Random numbers (n = 200) with uniform distribution were generated. Ranges were A 1 - 90; B 3 – 352; R 3.0 – 3.1.  %A vs. %B: rho = -

0.995; p<0.001; (A + B) vs. %R: rho = -1.000, p<0.001; A vs. %R: rho = -0.125 (p = 0.078). 

Condition 3: Very narrow ranges of both A and R relative to B: In this 

case, we would have a situation with two near-constant variable (A and 

R) relative to the third variable (B). Above, we showed that this situation 

should give a positive association between %A and %R, and an inverse 

association between %B and %R(%A). Computer test: We made the 

following ranges: A 1-1.05; B 5 – 50; R 0.1 - 0.12. Correlations were as 

expected, %A vs. %R: rho = 0.992; %B vs. %R (%A): rho = -0.993 (-

1.000); p< 0.001, n = 200 for all.  

Condition 4: Very narrow ranges of both B and R relative to A: In this 

case, we would have  two near-constant variables (B and R) relative to the 

third one (A). We should, accordingly, expect %R and %B to be 

positively associated, and %A to be negatively related to %R (%B). 

Computer test: We made the following ranges: A 1-10; B 5.00 – 5.05; R 

0.10 - 0.12. Correlations were as expected, %B vs. %R: rho = 0.981; %A 

vs. %R (B): rho = -0.981 (-1.000); p< 0.001, n = 200 for all.  

Condition 5: Narrow ranges of all of the variables (A, B, R): In this case, 

we would expect the degree of narrowing to govern the correlation 

outcome. For example, if A and B are more close to be fixed numbers than 

R, then we would anticipate %A and %B to be positively associated, and 

%R to relate negatively to %A (%B). Computer test: We chose A 1-1.002; 

B 5 – 5.002; R 0.1 - 0.2. The correlation outcome was as suggested, %B 

vs. %A: rho = 0.992 (Figure 4); %R vs. %A (%B): rho = -0.995 (-0.999); 

p< 0.001, n = 200 for all (not illustrated). Further computer experiments 

showed increasingly poorer %A vs. %B scatterplots (and correlation 

coefficients) in response to progressively narrowing the R-range (not 

shown), while keeping the ranges of A and B. 

 

 

 

 

 

Figure 4. Association between %A and %B when ranges of all of the 
variables are narrow. The figure relates to the equation %A + %B + %R 
=100, see text. Ranges were: A 1-1.002; B 5 – 5.002; R 0.1 - 0.2. %B vs. 

%A: rho = 0.992, p<0.001, n =200. 

These results indicate that correlations between relative amounts of 

positive scale variables are truly distribution dependent ones, i.e. caused 

by the spread of their absolute amounts. 

Slope of the Regression Line of the %A vs. %B Association, 

when A- and B- Ranges are Very Narrow Relative to the R 

Range 

Approach #1 to Find the %A vs. %B Slope. 
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General consideration: Above, we utilized this equation %A + %B + %R 

=100, or %B = -%A + (100 -%R) to explain why %A correlates positively 

with %B, if %R values are very high.  However, as demonstrated in the 

previous examples, we obtained positive %A vs. %B associations, and 

scatterplots close to straight lines, also with low numbers of R, and high 

numbers of A and B, on the condition that A and B had very narrow ranges 

relative to the R-range. We therefore need to consider in more detail the 

apparent linear positive %A vs. %B association. In this regard, we raise 

the question of what happens to %B (used as the ordinate = Y), as %A 

(the abscissa = X) increases, realizing that X as well as Y are functions of 

R. We use arbitrarily chosen values of X, within the X- range, 

emphasizing that we consider A and B as constants in the calculations 

below. If there is a linear relationship between X (= %A) and Y (=%B), 

then we should expect ΔY/ΔX to be constant. 

First, we find the R (R1) that corresponds to particular values of X and Y. 

By definition, X = 100A/(A + B + R). We find R1, through the following 

steps: X (A + B + R1) = 100A; A·X + B·X +R1·X = 100A; R1 = (100A – 

A·X – B·X)/X. We next add one X-unit = ΔX.  

Hence, X +1 = 100A/(A + B + R2); giving R2 = (100A - A - B - A·X - 

B·X)/(X+1).  

To find ΔY, we use R1 and R2, and compute the corresponding Y-values. 

By definition, Y = 100B/(A+B+R);  i.e.Y1= X·B/A. Similarly, Y2 

=100B/(A+B+R2); i.e.Y2 = (X + 1)·B/A. Accordingly, ΔY = Y2 - Y1 = (X 

+1)·B/A – X·B/A = B/A, which is the change in Y corresponding to a 

one-unit increase in X, i.e. ΔY/ΔX = (B/A)/1= B/A.  

Thus, in the current context, there should be a positive linear relationship 

between %B (“Y”) and %A (“X”), the slope being estimated by the B/A 

ratio. Below we show two examples to test this general reasoning. First, 

we consider a condition with two variables (A, B) having low numbers 

and very narrow ranges relative to a third variable (R) with broad range. 

Next, we use high numbers of A and B (with very narrow ranges) relative 

to R.  

Computer Testing: With ranges: A 1.00 - 1.01; B 2.00 - 2.02; R 1.0 -10.0, 

A and B are close to constants. We found a perfect positive association 

between %A and %B (Figure 5); rho = 1.000, p<0.001, n = 200.  Ranges 

of the relative amounts were 7.7- 24.7 (%A), 15.6 - 49.2 (%B), and 26.1 - 

76.6 (%R). Skewness of %A, %B, and %R were 0.84, 0.84, and -0.84, 

respectively. Equation of the %A vs. %B regression line was: %B = 2.00 

(0.00)*%A - 0.012 (0.024), i.e. a slope value equal to that found by the 

B/A ratio.  

 

 
 

 

 

 

 

 

 

 

 

Figure 5: Association between %A and %B when numbers of A and B are 
low relative to R The figure relates to the equation %A + %B + %R = 100, 

see text. The ranges were A 1.00 - 1.01; B 2.00 - 2.02; R 1.00 - 10.00. 

Spearman’s rho for &A vs. %B: 1.000, p<0.001, n =200.  

Thus, if both A and B have very low numbers and variabilities relative to 

R, then we find a positive and linear %A vs. %B association, the slope 

being well estimated by the B/A ratio. 

With ranges A 50.00 - 50.05, B 20.00 - 20.02, and  R 1 - 10.0, there was a 

perfect positive association between %A and %B (Figure 6), and a perfect 

inverse relationship (not illustrated) between %R and %A (%B); rho = -

1.000 (-1.000), p<0.001 for all, n = 200.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Association between %A and %B when numbers of A and B are 
high relative to R The figure relates to the equation %A + %B + %R = 100, 

see text. The ranges were A 50.00 - 50.05; B 20.00 - 20.02; R 1 - 10.0.  
Spearman’s rho for %A vs. %B: 1.000, p<0.001, n =200.  

Ranges of relative amounts were 62.5 - 70.4 for %A, 25.0 – 28.2 for %B, 

and 1.5 -12.5 for %R, i.e. low values of %R relative to those of %A and 

%B. Equation of the %A vs. %B regression line was: %B = 0.40 

(0.00)·%A - 0.018 (0.024), i.e. a slope value equal to that found by the 

B/A ratio.  Accordingly, also if both A and B have very high numbers, but 

low ranges relative to R, then we find a positive and linear %A vs. %B 

association, the slope being well estimated by the B/A ratio. 

Approach #2 to Find the %A vs. %B Slope. 

General Consideration: The equation %B = -%A + (100 - %R) seems to 
resemble the equation of a straight line. The slope (ΔY/ΔX) of the 

regression line for the %A vs. %B association may be roughly estimated 
using maximum and minimum values of the A and B percentages, i.e. 
ΔY/ΔX = (%Bmax - %Bmin)/(%Amax - %Amin).  

Hence, the equation %B = -%A + (100 - %R) could be written more 
precisely: 

                   %B(p - q)  = [(%Bmax - %Bmin)/(%Amax - %Amin)]*%A (r - s) + z              

Subscript parentheses indicate ranges of %A and %B, and z = 100 - %R. 

The approximated slope value would accordingly be:   

ΔY/ΔX = (100·Bmax /Smin – 100·Bmin/Smax)/(100·Amax /Smin – 

100·Amin/Smax). 

 Since ranges of A and B are very narrow, we may do the following 

approximations:  

Amax = Amin = A, and Bmax = Bmin= B. Thus, ΔY/ΔX = (B·Smax – 

B·Smin)/(A·Smax – A·Smin) = B/A.  Thus, the slope may be estimated by 

the B/A ratio, and should approach +1 only if A approaches B. 

Conceivably, the slope value computed manually based upon the 

approximated values may deviate somewhat from the corresponding one 

found by the computer. This deviation should increase in response to 

increasing the A and/or B ranges.   
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Accordingly, if ranges of A and B are very narrow relative to that of R, 

the slope estimate of the %A vs. %B regression line should be little 

influenced by the magnitudes of the variables. Thus, with these 

restrictions laid upon A, B, and R variabilities, we suggest that the slope 

estimate of %A vs. %B (i.e. the B/A ratio) should apply to any R value on 

the positive scale, and to any sizes of the A and B numbers. Furthermore, 

with very narrow ranges of A(B), the scatterplot of the %A vs. %B 

association should be close to a line, since one particular value of %A 

(and of %B) corresponds closely to one S-value only. Hence, %A and %B 

should show a strong positive association.  As explained above, the %A 

vs. %B scatterplot should improve (be poorer) in response to narrowing 

(broadening) the A and/or B ranges (variabilities), and also improve (be 

poorer) when increasing (decreasing) the R-range.  

%R vs. %A (%B), when A (B) Ranges are Narrow Relative to R - 

Range 

The equation %A + %B + %R =100 may be written %A = -%R + (100 - 

%B).  If %B has very low values, this equation would approach %A = -

%R + 100, showing a linear negative %A vs. %R association. The same 

reasoning goes for %B vs. %R, when %A values are small. Then, the 

equation would approach %B = -%R +100. Slope of the %R vs. %A 

regression line may be roughly estimated using maximum and minimum 

values of %R and %A, i.e. ΔY/ΔX = - (%Rmax - %Rmin )/(%Amax  - %Amin). 

Similarly, slope of the %R vs. %B regression line may be estimated by 

ΔY/ΔX = - (%Rmax - %Rmin )/(%Bmax  - %Bmin). In these cases, the previous 

simplification does not work, due to high R-variability. 

Computer Experiments to Test in More Detail Associations 

between Percentages, and Applicability of B/A Ratio, if 

Ranges of A (B) are Narrow Relative to the R-Range 

Initial tests of the %A vs. %B slope: 

With A 0.100 - 0.102, B 0.200 - 0.201, and R 1- 2, we found that mean 

(SE) of the “computer- slope” was 1.99 (0.006), against min (max) 1.96 

(2.01), n =200, when using the B/A ratio. If increasing the R- range to 1- 

20, while keeping ranges of A and B, the mean “computer - slope” was 

1.98 (0.001); with R 1 - 200, the slope was 1.99, and with R 1 - 2000, we 

found the slope value to be 1.98. We next made appreciable changes in 

the A, B and R sizes, i.e. A 1.00 - 1.02, B 50.0 - 50.05, R 1 - 10. The 

computer gave the following mean (SE) for the %A vs. %B slope: 49.2 

(0.44); with the B/A –ratio, we found minimum (maximum) values 49.0 ( 

50.1), n =200.We computer - tested slope values using many variations 

of A, B, and R ranges, however always keeping the A and B ranges very 

narrow. The slope values made by the computer were always close to that 

predicted by the B/A ratio (vide infra). As expected, the scatterplot 

became poorer in response to increasing the A and/or B range (or 

decreasing the R range), and the B/A ratio did not any longer seem a 

reliable estimate of the slope (scatterplots not shown). 

Below we extend and systemize the computer experiments, to test how A-

, B-, and R-percentages of S might correlate, in response to altering ranges 

of the variables. Additionally, we extend the testing of applicability of the 

B/A ratio to assess slope of the %A vs. %B association. In all of the 

experiments, we define ranges of A and B to be very narrow relative to 

the R-range. 

In most of the calculations, we use random numbers with uniform 

(rectangular) distribution. The correlation outcomes were, however, 

qualitatively the same with uniform and normal distribution of the 

random numbers, if corresponding ranges were equal. In each of the 

examples below, we illustrate schematically where we place A, B, and R 

on the scale; additionally, we show the exact ranges.     

 

 Example 1: Low numbers and ranges of A and B, relative to R   

 

0                                    10                                     20 

               A    _                                              
               B              _                                   

               R                  ______________________________ 

 
We arbitrarily chose the following ranges: A 0.10 - 0.15; B 4.0 - 4.2; R 5 

- 20, and generated 200 uniformly distributed random numbers, based on 

these ranges. As shown in Figure 7, left panel, %A was positively 

associated with %B (Spearman’s rho = 0.913; %R was negatively 

associated with %A (%B): rho = -0.918 (- 1.000), p < 0.001 for all, Figure 

7, middle and right panels.  Slope (SD) of the %A vs. %B regression line, 

estimated by the computer, was 25.7 (0.78), against 26.7 - 42.0 using B/A 

ratio (min - max).  

 

 

Figure 7: Association between %A and %B (left panel), and between %R and %A(%B), middle and right panels. The figure relates to the equation %A 
+ %B + %R = 100, see text. Uniformly distributed random numbers (n = 200) were used. Ranges were A 0.10 - 0.15; B 4.0 - 4.2; C 5 - 20. %A vs. %B 

(Spearman’s rho = 0.913); %R vs. %A (%B): rho = -0.918 (- 1.000), p < 0.001 for all.  

As anticipated, sum (S) of A + B + R correlated negatively with %A (%B) rho= -0.917 (-0.998), and positively with %R (rho = 0.998), p<0.001 for all, 

thereby explaining the positive %A vs. %B correlation, as well as the negative %R vs %A (%B) correlation.  
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Figure 8:  Association between Sum (S) of three positive scale variables (A, B, R) and their percentages of S. Uniformly distributed random numbers (n 
= 200) were used. Ranges of the variables were A 0.10 - 0.15; B 4.0 - 4.2; C 5 - 20.  Spearman’s rho for S vs. %A (%B, %R) were - 0.917 (- 0.998, 

0.998), p < 0.001 for all.  

Quartiles of the %A, %B, and %R distributions were 0.61, 0.73, 0.95; 

19.6, 24.1, 31.1; and 67.9, 75.2, 79.8, respectively, i.e. showing low %A 

(%B) values relative to %R. Skewness of %A, %B, %R: 0.796, 0.778, 

and -0.776, respectively (SE 0.17 for all). Thus, A and B percentages had 

a moderate positive skewness, and %R a negative one. 

               Example 2: Numbers of A and B are higher than R, but A(B) ranges are much lower than the R range   

       0                                    10                                     20 

              A                                            _                                              

              B                                                                                      _                                   

              R   _________________ 

 

We chose the following ranges: A 10.0 - 10.1; B 20.0 - 20.2; R 0 - 9, and 

generated 200 uniformly distributed random numbers based upon these 

ranges. As shown in Figure 9, left panel, %A correlated positively with 

%B (Spearman’s rho = 0.998, p<0.001). Furthermore, %R correlated 

negatively (Figure 9, middle and right panel) with %A (%B): rho = -0.999 

(- 1.000), p < 0.001 for all.  Slope (SD) made by the computer was 2.00 

(0.01), and 1.98 - 2.02 (min – max) when using the B/A ratio. 

 

 

Figure  9 :  Scatterplot of %A vs. %B (left panel), %R vs. %A (middle panel), and %R vs. %B (right panel), with reference to the equation %A + %B + 
%R = 100 (see text). Uniformly distributed random numbers (n = 200) were used. Ranges were A 10.0 - 10.1; B 20.0 - 20.2; R 0 - 9. %A vs. %B; 

Spearman’s rho = 0.998; %R vs. %A (%B): rho = - 0.999 (-1.000), p < 0.001 for all.  

As shown in Figure 10, sum (S) of the variables was negatively related to %A (%B); rho= -0.999 (-0.999), and positively associated with %R (rho = 

1.000). These relationships may explain the positive %A vs. %B correlation, as well as the negative %R vs %A (%B) correlation. Quartiles of the %A, 

%B, and %C distributions were 27.2, 28.9, 30.8; 54.4, 57.8, 61.5; and 7.6; 13.4, 18.5, respectively, i.e. showing a quite different picture than that 

observed in Example 1. We found a modest positive skewness of %A, and %B (i.e. 0.367, and 0.381, respectively), and a modest negative one of %R 

(-0.376).  
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Figure 10:  Scatterplot of S vs. %A,  %B, and %R, with reference to the equation %A + %B + %R = 100 (see text). Uniformly distributed random 
numbers (n = 200) were used. Ranges were A 10.0 - 10.1; B 20.0 - 20.2; R 0 - 9. %A vs. %B: Spearman’s rho: S vs. %A rho = - 0.999; S vs. %B rho= - 

0.999; S vs. %R rho = 1.000, p < 0.001 for all. 

 

Example 3: The R- range includes ranges of A and B, both of which << 

R range 

  0                                    10                                     20 

               A                             _                                              

               B              _                                   

               R   ___________________________ 

 

We chose the following ranges: A 10.0 - 10.5; B 4.0 - 4.2; R 1 - 15. As 

shown in Figure 11 (left panel), %A correlated positively with %B 

(Spearman’s rho = 0.993); %R was negatively associated with %A (%B): 

rho = -0.999 (- 0.996), p < 0.001 for all, n=200. Sum (S) of A, B, and R 

correlated negatively with %A (%B) rho= -0.996 (-0.997), and positively 

with %R (rho = 0.998), scatterplots not shown. These relationships to S 

may explain the positive %A vs. %B correlation, as well as the negative 

%R vs %A (%B) relationship.  

 

 

 

 

 

 

 

 

 

 

Figure 11:  Scatterplot of %A vs. %B (left panel), %R vs. %A (middle panel), and %R vs. %B (right panel), with reference to the equation A + B + R = 
S (see text). Uniformly distributed random numbers (n = 200) were used. Ranges were A 10.0 - 10.5; B 4.0 - 4.2; R 1 - 15. %A vs. %B; Spearman’s rho 

= 0.993; %R vs. %A (%B): rho = -0.999 (- 0.996), p < 0.001 for all.  

The computer - made slope (SD) of the %A vs. %B regression line was 

0.40 (0.003), and 0.38 - 0.42 (min and max) when using the B/A ratio. 

Quartiles of the %A, %B, and %C distributions were 39.9, 47.4, 55.4; 

16.2, 19.0, 22.5; and 22.1, 33.5, 44.0, respectively, i.e. again showing a 

considerable difference from distributions found in Example 1 and 2.  

Skewness of %A, %B, and %R distributions were 0.561, 0.540, and -

0.556, respectively (SE 0.17 for all). Thus, A and B percentages had a 

modest positive skewness, and %R a modest negative one (histograms not 

shown). 

Example 4: Range of R is placed between A(B) ranges; range of A(B)<< 

R range 

0                                    10                                     20 

               A _                                              

               B                                          _                                  

               R     ________________  

We chose A 0.10 - 0.12; B 11.0 - 11.2; R 1 - 10. Again, the positive %A 

vs. %B association prevailed (rho = 0.969), as well as the negative 

relationship between %R and %A(%B), rho = -0.970 (-1.000), p<0.001 

for all; n= 200. S correlated negatively with %A (rho = - 0.969), and with 

%B (rho = - 0.999), and positively with %R (rho = 0.999), p<0.001, n 

=200; scatterplots not shown. Slope (SD) of the %A vs. %B regression 

line, made by the computer was 92.8 (2.3), and 91.7 - 112.0 (max and 

mean) when using the B/A ratio. 

Example 5: Using A, B, and R with extremely low variabilities of all, 

however A(B) variability << R variability 

We chose A 5.0000 – 5.0005; B 2.0000 – 2.0002; R 100.00 – 100.05. 

Again, the positive %A vs. %B association prevailed (rho = 0.961), as 

well as the negative relationship between %R and %A(%B), rho = -0.996 

(-0.979), p<0.001 for all; n= 200. S correlated negatively with %A (rho = 

- 0.979), and with %B (rho = - 0.979), and positively with %R (rho = 

0.986), p<0.001, n =200; scatterplots not shown. Slope (SD) of the %A 

vs. %B regression line, as made by the computer was 0.397 (0.008), and 

0.400 when using the B/A ratio. Quartiles of the %A, %B, and % R 

distributions were 4.6715, 4.6721, 4.6725; 1.8686, 1.8688, 1.8690; and 

93.4584, 93.4591, 93.4599, respectively. Thus, differences in quartiles 

appeared in the third decimal.  Skewness of %A, %B, and %R 

distributions were -0.038, -0.033, and 0.037, respectively (SE 0.17 for 

all), i.e. all of the percentages had close to normal distributions 

(histograms not shown). 
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It might be questioned whether the above correlation outcome 

is related to using random numbers with uniform (rectangular) 

distribution. The outcome was, however, qualitatively similar also with 

normal distribution of the random numbers, as exemplified below. 

Example 6. Using A, B, and R with normal distribution, and 

A(B)variability << R variability 

We generated random numbers with normal distribution (n = 200), using 

the following mean (SD) values, i.e. A 1.0 (0.1); B 0.2 (0.02); R 2.4 (1.1). 

As shown in Figure 12, left panel, %A correlated positively with %B: rho 

= 0.879. The slope value was 0.196 made by the computer, and 0.200 by 

the B/A ratio.  %R correlated negatively with %A (%B): rho = - 0.995 

(-0.919); p<0.001 for all. S correlated negatively with %A (rho = -0.924), 

and with %B (rho = -0.922), and positively with %R (rho = 0.942), 

p<0.001, n =200; scatterplots not shown. 

Quartiles of the %A, %B, and %R distributions were 23.6, 28.0, 35.3; 4.5, 

5.7, 7.0; and 58.4, 66.5, 71.7, respectively, i.e. again showing a 

considerable difference from the distributions found in the previous 

examples.  Skewness of %A, %B, and %R distributions were 2.49, 2.95, 

and -2.56, respectively (SE 0.17 for all). Thus, A and B percentages had 

a strong positive skewness, and %R a strong negative skewness 

(histograms not shown). 

 

 

 

Figure 12:  Association between %A and %B (left panel), and between %A(%B) and %R (middle and right panel). The figure relates to the equation %A 
+ %B + %R = 100, see text. Random numbers (n = 200) with normal distribution were generated from mean (SD) values, i.e. A 1.0 (0.1); B 0.2 (0.02); 

R 2.4 (1.1). %A vs. %B: rho = 0.879; %R vs. %A (%B): rho = - 0.995 (- 0.919); p<0.001 for all. 

Example 7: Does a change in the R size influence the correlation between 

A, B, and R percentages of S, if using random numbers with normal 

distribution, and low variabilities of A and B? 

In response to changing the R-values only, to be 8.0(2.4) instead of 2.4 

(1.1), while keeping sizes and variabilities of A and B, i.e. A 1.0 (0.1); B 

0.2 (0.02, the correlation outcome did not change much (%A vs. %B: rho 

= 0.853; %R vs %A: rho = -0.995; %R vs. %B: rho = -0.896); scatterplot 

not shown. Mean (SE) value of the “computer-made” slope of the %A vs. 

%B regression line was: 0.19 (0.01). We calculated ranges of A and B to 

be 0.76 -1.30, and 0.13 - 0.26, respectively. These ranges were broader 

than in the previous examples with uniform random numbers of A and B. 

Slope of the %A vs. %B regression line, as estimated with the B/A ratio 

(max and min), was 0.10 - 0.34, mean = 0.22. Quartiles of the %A, %B, 

and %R distributions were 9.0, 11.3, 13.7; 1.8, 2.1, 2.8; and 83.7, 86.5, 

89.1, respectively, i.e. again showing a considerable difference from the 

distributions found in the examples above. Skewness of % A, %B, and 

%R distributions were 1.46, 1.95, and -1.53, respectively (SE 0.17 for all). 

Thus, A and B percentages had high positive skewness, and %R a high 

negative one. 

Example 8: Normal distribution of A, B, and R; equal mean values 

(10.00) of all variables; however, variabilities (SD) of A and B are much 

lower than of that of R. 

0                                       10                                       20 

              A                                         .                                              

              B                                         _                                  

              R                                _________ 

We chose mean (SD) values to be A 10.0 (0.3); B 10.0 (0.4); R 10.0 (4.0). 

Spearman’s rho for %A vs. %B: 0.930 (Figure 13, left panel); %R vs. 

%A(%B) rho - 0.982(- 0.980), Figure 13, middle and right panels; 

p<0.001 for all, n=200. 

 

Figure 13:  Association between %A and %B (left panel), and between %A(%B) and %R (middle and right panel), when mean values of the variables 
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are equal, but their ranges differ. The figure relates to the equation %A + %B + %R = 100, see text. Random numbers (n = 200) with normal 

distribution were generated from mean (SD) values, i.e. from A 10.0 (0.3), B 10.0 (0.4), and R 10.0 (4.0). %A vs. %B: rho = 0.930; %R vs. %A (%B): 
rho = -0.982 (- 0.980); p<0.001 for all. 

Sum of the variables (S) correlated negatively with %A (rho = - 0.978) 

and with %B (rho = -0.954), but positively with %R (rho = 0.983), 

p<0.001 for all; scatterplots not shown. This outcome is comparable to 

corresponding outcomes observed above when using uniformly 

distributed random numbers. Quartiles of the %A, %B, and %R 

distributions were 30.1, 33.4, 36.6; 30.0, 33.1, 36.2; and 27.5, 33.4, 40.0. 

Correlations: S vs. %A, %B, and %R; rho = -0.978, -0.954, and 0.983, 

respectively. Skewness of %A, %B, and %R were: 0.764, 0.850, -0.839 

(SE = 0.172 for all).  Thus, there was a moderate positive skewness of the 

%A and %B distributions, and a negative skewness of the %R histogram 

(not shown). 

From the above considerations - and as supported by computer tests - it 

would appear that the particular ranges (variabilities) of A (B, R) govern 

the correlations between their relative amounts, as observed with uniform 

and normal distribution of random numbers. Additionally, we regularly 

observed that A and B percentages of S had positive skewness, and %R 

negative skewness. We previously commented on skewness [22], 

encountered with two variables having low variability (A and B) relative 

to a third one (R), as further examined below. Thus, the above reasoning 

and computer experiments seem to provide the following general rule: 

With three positive scale variables, two of which (A, B) having low 

variability relative to a third one (R), we should expect a positive %A vs. 

%B association, and a negative relationship between %R and %A (%B). 

This outcome seems to occur wherever we encounter the variables on the 

positive scale, and irrespective of using random numbers with uniform or 

normal distribution. Furthermore, slope of the %A vs. %B regression line 

may be well estimated by the B/A ratio. 

Examples from Physiology: The B/A Ratio and Associations 

between Relative Amounts of Body Fatty Acids  

In breast muscle lipids of chickens, we previously reported slope values 

of relative amounts of arachidonic acid (AA, 20:4 n6) vs. percentages of 

many other fatty acids, all of which having low variabilities relative to 

sum of the remaining fatty acids [20]. With reference to these 

observations, we should expect to find similarities between slope values 

of regression lines found by the computer, and those calculated manually, 

using the B/A ratio. We accordingly compared previously reported [20] 

slope values of seven associations, between %AA and percentages of 

other fatty acids. Numerators in the following fractions (in bold) are mean 

B/A-ratios, computed manually. Denominators are mean slope values of 

the regression lines, found by the computer. The results were: %AA vs. 

%20:5 n3, [1.7/1.2]; %AA  vs. %20:2 n6, [6.2/5.6]; %AA vs. %22:5 n3, 

[1.0/0.8]; %AA vs. %20:3 n6, [3.9/3.2]; %AA vs. %18:0, [0.34/0.38]; 

%AA vs. %22:6 n3, [1.6/0.9]; %AA vs. %20:3 n3, [6.2/4.4]. These results 

seem to support that we, in the current context, may roughly estimate the 

slope by the B/A ratio. The outcome is in keeping with the reasoning 

above. We may add that all of the associations were generally strong ones, 

i.e. with rho > 0.7.  

Alterations in Ranges and Correlations between Relative 

Amounts 

With very narrow ranges of A and B relative to R, the A fraction of S will 

approach Af = 1/(t + R/A), and the B-fraction, Bf =1/(k + R/B), where t 

and k are close to be constants. In this case, one particular value of the A 

(B)-fractions (percentages) should correspond closely to one particular 

value of S, i.e. %A (%B) vs. S should be close to a line. This reasoning 

should apply to the positive S vs. %R relationship as well. However, when 

broadening the A and/or B ranges, the scatterplots should be poorer, since 

in this case, the above condition is disturbed. On the other hand, we would 

expect that narrowing the A and/or B ranges should improve the S vs. %A 

(%B) relationship. Additionally, any change in the R- range should 

influence %A and %B, since %A + %B + %R =100. Thus, increasing 

(decreasing) the values of R (%R) by broadening (narrowing) R towards 

higher (lower) values should decrease (increase) %A and %B, and 

accordingly improve (make poorer) the S vs. %A (%B) association, and 

therefore, also the %A vs. %B relationship. 

Below we show computer experiments to illustrate how alterations in 

ranges of A, B, and R may influence associations between the A and B 

percentages. We first re-examined the correlation outcome with ranges 

shown in Example 1, however using a new set of random numbers, i.e. 

ranges were A 0.10 - 0.15; B 4.0 - 4.2; and R 5 - 20. Spearman’s rho = 

0.913 (p<0.001, n = 200) for %A vs. %B; rho = -0.918 (-1.000) for %R 

vs. %A (%B), Figure 14, left panel. According to the reasoning above, the 

association should improve (be poorer) if narrowing (broadening) the A 

and /or B ranges.  

Changing ranges of A and B: We next narrowed the A range to be 0.10 - 

0.11, and the B range to be 4.00 - 4.05 while keeping the R range. As 

expected, the scatterplot did improve (Figure 14, middle panel), rho = 

0.993, p<0.001, n = 200. We then broadened the A range to 0.1 - 0.2, and 

the B range to 4.0 - 5.0, while keeping the R range. The %A vs. %B 

scatterplot was made poorer (Figure 14, right panel), rho = 0.728, 

p<0.001, n = 200.  Additionally, the negative associations between %R 

and %A (%B) were changed according to suggestions (not shown).  
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Figure 14: Association between %A and %B in response to narrowing and broadening the A and B ranges. The figure relates to the equation %A + %B 
+ %R = 100, see text. Left panel: The A range was 0.10 - 0.15; B 4.00 - 4.2; R 5 - 20; rho = 0.913. Middle panel: A 0.10 - 0.11; B 4.00 - 4.05; R 5 - 20; 

rho = 0.993. Right panel:  A 0.1 - 0.2; B 4.0 - 5.0; R 5 - 20, rho = 0.728. In all panels: 200 uniformly distributed random numbers, p< 0.001. 

Changing the R - range: We finally narrowed  the R range to be 2 -10 

instead of 0 -15, while keeping the A and B ranges, i.e. the chosen ranges 

were A 10.0 - 10.1; B 20.0 – 20.2; R 2 -10. The %A vs. %B scatterplot 

was made poorer (Figure 15, left panel), rho = 0.790 (p<0.001, n=200). 

When narrowing the R range further, to be 2-5, the scatterplot became 

even poorer (Figure 15, right panel), rho for %A vs %B 0.467, p<0.001, 

n = 200.   

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15:  Association between %A and %B, with reference to the equation %A + %B + %R = 100, see text. Random numbers (n = 200) with uniform 

distribution were generated. Left panel:  Ranges were A 10.0 - 10.1; B 20.0 – 20.2; R 2 -10; Spearman’s rho = 0.790. Right panel:  A 10.0 - 10.1; B 
20.0 – 20.2; R 2 – 5; rho = 0.464, p<0.001 for both. 

Conceivably, we might expect a positive %A vs. %B association, with 

slope estimate not far from the B/A ratio, also when conditions deviate 

somewhat from those mentioned (vide supra). Computer experiments 

confirmed this suggestion. These examples strongly support that 

variability of A, B, and R is the crucial factor governing associations 

between relative amounts of the variables.  

Making Skewness 

In many of the previous examples, we observed that distributions of A- 

and B- percentages of S had positive skewness, whereas %R had a 

negative skewness, raising the question of how to explain skewness of the 

relative amounts of A, B, and R. 

We consider again S = A + B + R, where A and B have narrow ranges 

relative to the R-range. The A-percentage of S, %A = 100A/(A + B + R) 

= 100/(1 + B/A +R/A) = 100/( t + R/A), where t = 1+ B/A is close to a 

constant. Thus, R is the governor of %A, irrespective of where we place 

A and B on the positive scale. Furthermore, %A should relate inversely to 

R, since the denominator increases as R increases from lowest to highest 

value. Additionally, the decrease in %A per unit increase in R should be 

larger at low values of R than at high values, as for example illustrated 

using the following ranges: A 1.0 - 1.1, B 2.0 - 2.1, and R 1 - 100. Thus, 

with R = 1, %A = 100/(t + 1/A) = 100/( 1 +2/1 +1/1) = 25.0%. If 

increasing R one unit, %A = 100/(1+ 2/1 + 2/1) = 20%.  However, a 

similar one-unit increase in R at the upper end of the R-range results in a 

much smaller decrease in %A, i.e. from 100/(1+ 2/1 + 99/1) = 0.98% to 

100/(1+ 2/1 + 100/1) = 0.97%.  Accordingly, the curvilinear negative 

association between %A and R should have the concave upwards, as also 

seen from the derivative of the approximated %A (%B) formula (not 

shown). Similar considerations should apply to the negative %B vs. R 

association. 

The R-percentage of S is %R =100·R/(A + B + R) = 100/(1 + z/R) where 

z = (A + B) is close to a fixed number. Thus, %R should increase when 

increasing R from lowest to highest value. However, this effect should 

attenuate with increasing R-values, showing a positive curvilinear 

relationship between percent R and R, with the concave downwards. For 

example, when R goes from 1 to 2, then %R increases from approximately 

100/(1 + 3/1) = 25% to 100/(1 + 3/2) = 40%. A similar one-unit increase 

in R at the upper end of the R-range, i.e. from R = 99 to R =100, is 

associated with a very small increase in %R, i.e. from 100/(1 + 3/99) = 

97.05% to 100/(1 + 3/100) = 97.09%.  This reasoning indicates that the 

concave should be downwards for to the positive relationship between 

%R and R. The finding that R is negatively associated with %A and %B 

explains that these percentages of S are positively associated. 

Furthermore, since %R is positively associated with R, percent R should 

be negatively related to %A and %B. 

Furthermore, the relationships between R and %A, %B, and %R show 

that the number of cases associated with one unit decrease in %A (%B) 

is progressively falling as these percentages continue to decrease (Figure 

16). The opposite happens for %R: the number of cases increases for each 

unit increase in %R. Thus, there will be a positively skewed histogram of 

%A (%B), and a negative one of %R (Figure 16, lower panels). Moreover, 

in the current example, R is the governor of skewness. Thus, an increase 

(decrease) in R range should increase (decrease) skewness of the 

histograms. However, from the mathematical formulas discussed above, 
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and as illustrated in Figure 16 (top panels), we should not expect large 

differences in skewness of %A (%B, %R) in response to increasing the 

R-range above approximately R = 30, in this particular case. Similarly, 

if R is decreased below R = 30, then %A (%B) percentages should 

increase appreciably, and %R should decrease strongly. Computer 

experiments were in support of this reasoning (not shown). We emphasize 

that the R variability should be much higher than that of A (B), to achieve 

this outcome. 

In the current example, skewness was high for relative amounts of the 

variables, i.e. 3.08, 3.08, and -3.08, for %A, %B, and %R, respectively 

(SE 0.17 for all; n = 200), as shown in Figure 16 , lower panels.  As 

expected, %A correlated positively with %B (rho = 0.998), and %R 

negatively with %A (%B): rho = -0.999 (-1.000), p<0.001, n = 200.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Association between R and %A  (%B, %R), upper panels; and histograms of %A, %B, and %R (lower panels). The figure relates to the 
equation %A + %B + %R = 100, see text. The ranges were, A 1.0 - 1.1; B 2.0 - 2.1; and R 1 – 100, n = 200 (uniformly distributed random numbers). 

Thus, provided that ranges of A and B are very narrow relative to that of 

R,  the R-range will determine skewness of %A, %B, and %R, as well as 

correlations between the percentages, in the current case. Indeed, we may 

consider skewness as a mediator of the current correlations, as previously 

suggested [22]. 

The interplay between A, B, and R ranges concerning their influence upon 

skewness, and correlations is illustrated further by the next example, 

where we made a small increase in the A and B ranges, i.e. for A to be 1.0 

- 1.5; for B 2.0 - 2.5; while keeping R 1- 2. This alteration had the effect 

that skewness was attenuated, to 0.16, 0.15, and 0.10 for %A, %B, and 

%R, respectively. With these ranges, %A and %B were not any longer 

significantly associated (rho = -0.012, p = 0.861). However, the inverse 

relationship between %R and %A (%B) prevailed modestly (%R vs. %A: 

rho = -0.586; %R vs. %B: rho = -0.785, p<0.001, n = 200). 

Thus, we have explained how skewness of %A, %B, and %R are brought 

about, as well as their correlations, when S = A + B + R, and A (B) have 

very narrow ranges relative to R. In line with the a priori anticipations, 

we consistently observed a positive skewness of %A and %B histograms, 

and a negative skewness of the %R distribution. Furthermore, %A and 

%B did correlate positively, the slope being well estimated by the B/A 

ratio.  As predicted, %R related negatively to %A and %B. Additionally, 

we showed that skewness and correlations might change appreciably in 

response to minor changes in the ranges of the variables.  

Distribution Dependent Correlations and Associations 

between Body Fatty Acid Percentages  

We recently reported that relative amounts of fatty acids that are 

precursors of eicosanoids (docosanoids) were positively associated in 

breast muscle lipids of chickens [13, 20, 21, 24]. Surprisingly at the time, 

the positive correlations could be well reproduced when random numbers 

were used in lieu of the true values of the fatty acids, provided that the 

random numbers were sampled with the true ranges [13, 14]. In this case, 

the concentration distributions of the various fatty acids were crucial for 

obtaining the correlations. For example, relative amount of arachidonic 

acid (AA, 20:4 n6) was shown to correlate positively with percentage 

eicosapentaenoic acid (EPA, 20:5 n3),  and with some other eicosanoid 

precursor fatty acid percentages [20]. All of these fatty acids were low-

number ones, with low variability, relative to sum of the remaining fatty 

acids.  Since AA and EPA derived eicosanoids have opposing cellular 

effects [1-3], it was suggested that the positive association between %AA 

and %EPA might possibly serve to ensure a proper balance between the 

metabolic effects of these powerful metabolites.  Furthermore, with 

percentages of oleic acid (OA, 18:1 c9) and AA, we observed a negative 

association  [18]. Also in this case, we found significant inverse 

associations when using random numbers in lieu of the measured values 

of OA and AA, on the condition that their ranges had the true variabilities. 

Additionally, minor changes in ranges of the fatty acids had major effects 
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on the mentioned correlation outcomes, suggesting that the correlations 

were distribution dependent ones.  

Evolution and Distribution Dependent Correlations 

We suggest that the principle of Distribution Dependent Correlations 

might be utilized in other contexts than with body fatty acids. Possibly, 

the suggested inverse relationship between relative amounts of 

lymphocytes and segmented neutrophil leukocytes could be another case 

of Distribution Dependent Correlations [24].  

The present results indicate that variability is crucial for obtaining 

correlations (positive as well as negative) between percentages of the 
same sum. It is, however, beyond the scope of this article to discuss the 
many types of error in physiological research. In brief, genetics and 
external factors could influence variability, such as diet, physical activity, 
and environment in general. Additionally, errors related to time, 
sampling, storage, measurement, and information bias could influence 
spread of a variable. Conceivably, the between-subject variability should 
be greater than the within-subject one, due to between-subject variability 

of DNA per se, and differences in epigenetic influences, such as DNA 
methylation and histone modification. Accordingly, the many causes of 
variability do seem to be an argument in favor of considering Distribution 
Dependent Correlations (DDC) as a mathematical artifact, when it comes 
to possible physiological interpretations of such correlations.  On the 
other hand, the mathematical principle of DDC could offer an excellent 
tool to regulate metabolism, raising the question of whether evolution 
might have utilized this principle. Our studies on body fatty acids [19 - 
22, 25 - 27] seem in favor of this latter idea. Thus, by determining the 

within-person variability, i.e. where on the scale the variables are placed, 
it follows from the DDC rules described in this article, whether relative 
amounts will be positively or negatively associated, or not correlated at 
all. In other words, evolution could govern associations between 
percentages of the same sum, through regulating within-person 
distributions of variables. Since the mathematical rules giving 
Distribution Dependent Correlations are general ones, they might apply 
to any unit system in nature. 

This work deals with theoretical considerations, and computer 
experiments, to explain associations between relative amounts of positive 
scale variables, as exemplified by body fatty acids. More studies are 
required to evaluate to what extent the suggested phenomenon of 
Distribution dependent correlations (DDC) is valid in the shown 
examples, and for other biological variables as well. Additionally, studies 
in various species should explore generalizability of the results. 
Furthermore, future studies should investigate the possible modifying 

influences upon DDC of environmental and lifestyle changes, including 
those related to diet and physical activity. Additionally, studies should 
clarify whether/how DDC relate to various disease conditions. 

Conclusion  

The present work explains why relative amounts of variables, such as 

body fatty acids, might be positively or negatively associated. One 
particular feature of such correlations seems to be that distributions 
(ranges) of the variables are crucial, suggesting the name Distribution 
Dependent Correlations (DDC). Thus, by directing variables to particular 
places on the scale, evolution might ensure that relative amounts of some 
variables must become positively associated, whereas percentages of 
others will correlate negatively. Since DDC rules are general, they should 
apply to any unit system in nature.  
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